Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Álvarez-Gallego is active.

Publication


Featured researches published by C. Álvarez-Gallego.


Bioresource Technology | 2010

Start-up of thermophilic-dry anaerobic digestion of OFMSW using adapted modified SEBAC inoculum.

L.A. Fdez.-Güelfo; C. Álvarez-Gallego; D. Sales Márquez; L.I. Romero García

The work presented here concerns the start-up and stabilization stages of a Continuous Stirred Tank Reactor (CSTR) semicontinuously fed for the treatment of the Organic Fraction of Municipal Solid Waste (OFMSW) through anaerobic digestion at thermophilic temperature range (55 degrees C) and dry conditions (30% Total Solids). The procedure reported involves two novel aspects with respect to other start-up and stabilization protocols reported in the literature. The novel aspects concern the adaptation of the inoculum to both the operating conditions (thermophilic and dry) and to the type of waste by employing a modified SEBAC (Sequential Batch Anaerobic Composting) system and, secondly, the direct start-up of the process in a thermophilic temperature regime and feeding of the system from the first day of operation. In this way a significant reduction in the start-up time and stabilization is achieved i.e. 110 days in comparison to 250 days for the processes reported by other authors for the same type of waste and digester. The system presents suitable operational conditions to stabilize the reactor at SRT of 35 days, with a maximum biogas production of 1.944 LR/L.d with a CH(4) and CO(2) percentage of 25.27% and 68.15%, respectively.


Bioresource Technology | 2015

Semi-continuous anaerobic co-digestion of sugar beet byproduct and pig manure: Effect of the organic loading rate (OLR) on process performance

Kaoutar Aboudi; C. Álvarez-Gallego; Luis Isidoro Romero-García

Anaerobic co-digestion of dried pellet of exhausted sugar beet cossettes (ESBC-DP) with pig manure (PM) was investigated in a semi-continuous stirred tank reactor (SSTR) under mesophilic conditions. Seven hydraulic retention times (HRT) from 20 to 5 days were tested with the aim to evaluate the methane productivities and volatile solids (VS) removal. The corresponding organic loading rates (OLR) ranged from 4.2 to 12.8 gVS/L(reactor) d. The findings revealed that highest system efficiency was achieved at an OLR of 11.2 gVS/L(reactor) d (6 days-HRT) with a methane production rate (MPR) and volatile solids (VS) reduction of 2.91 LCH4/L(reactor) d and 57.5%, respectively. The HRT of 5 days was found critical for the studied process, which leads to volatile fatty acids (VFA) accumulation and sharp drop in pH. However, the increase of HRT permits the recovery of system.


Bioresource Technology | 2015

Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): enhancement of bio-hydrogen production.

Rubén Angeriz-Campoy; C. Álvarez-Gallego; Luis Isidoro Romero-García

Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added).


Bioresource Technology | 2011

Dry-thermophilic anaerobic digestion of simulated organic fraction of Municipal Solid Waste: Process modeling

L.A. Fdez.-Güelfo; C. Álvarez-Gallego; D. Sales Márquez; L.I. Romero García

Solid retention time (SRT) is a very important operational variable in continuous and semicontinuous waste treatment processes since the organic matter removal efficiency--expressed in terms of percentage of Dissolved Organic Carbon (% DOC) or Volatile Solids (% VS) removed--and the biogas or methane production are closely related with the SRT imposed. Optimum SRT is depending on the waste characteristics and the microorganisms involved in the process and, hence, it should be determined specifically in each case. In this work a series of experiments were carried out to determine the effect of SRT, from 40 to 8 days, on the performance of the dry (30% Total Solids) thermophilic (55°C) anaerobic digestion of organic fraction of Municipal Solid Wastes (OFMSW) operating at semicontinuous regime of feeding. The experimental results show than 15days is the optimum SRT (the best between all proved) for this process. Besides, data of organic matter concentration and methane production versus SRT have been used to obtain the kinetic parameters of the kinetic model of Romero García (1991): the maximum specific growth rate of the microorganisms (μmax=0.580 days(-1)) and the fraction of substrate non-biodegradable (α=0.268).


Bioresource Technology | 2014

Enhancement in hydrogen production by thermophilic anaerobic co-digestion of organic fraction of municipal solid waste and sewage sludge – Optimization of treatment conditions

Vinay Kumar Tyagi; Rubén Angériz Campoy; C. Álvarez-Gallego; L.I. Romero García

Batch dry-thermophilic anaerobic co-digestion (55°C) of organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) for hydrogen production was studied under several sludge combinations (primary sludge, PS; waste activated sludge, WAS; and mixed sludge, MS), TS concentrations (10-25%) and mixing ratios of OFMSW and SS (1:1, 2.5:1, 5:1, 10:1). The co-digestion of OFMSW and SS showed a 70% improvement in hydrogen production rate over the OFMSW fermentation only. The co-digestion of OFMSW with MS showed 47% and 115% higher hydrogen production potential as compared with OFMSW+PS and OFMSW+WAS, respectively. The maximum hydrogen yield of 51 mL H2/g VS consumed was observed at TS concentration of 20% and OFMSW to MS mixing ratio of 5:1, respectively. The acetic and butyric acids were the main acids in VFAs evolution; however, the higher butyric acid evolution indicated that the H2 fermentation was butyrate type fermentation.


Waste Management | 2012

Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

L.A. Fdez-Güelfo; C. Álvarez-Gallego; D. Sales; L.I. Romero García

The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55°C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y(pMAX) and θ(MIN)) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms (μ(max)) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d(-1) (K=1.391 d(-1); Y(pMAX)=1.167 L CH(4)/gDOC(c); θ(MIN)=7.924 days) vs. 0.135 d(-1) (K=1.282 d(-1); Y(pMAX)=1.150 L CH(4)/gDOC(c); θ(MIN)=9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.


Science of The Total Environment | 2017

Influence of total solids concentration on the anaerobic co-digestion of sugar beet by-products and livestock manures

Kaoutar Aboudi; C. Álvarez-Gallego; Luis Isidoro Romero-García

A series of batch anaerobic digestion assays were implemented to determine the influence of total solids concentration on the anaerobic digestion of sugar beet by-products and their co-digestion with two kind of livestock manures (pig and cow manures). The two total solid concentrations studied were 8% and 5%. Total solids contents above 8% were not evaluated because of the inappropriate rheological behaviour of sugar beet by-products at these concentrations. The best total solid content tested corresponded to 8%, achieving specific methane yields of 464.3 and 451.4mL/g VSadded for co-digestion with pig manure and cow manure respectively. These data were 1.5 times higher than that obtained for reactors operating with 5% total solids content. For individual digestion of sugar beet by-products, final methane yields operating at 8% were also higher than those measured at 5% total solids concentration. However, in these tests, a large delay in the start of biogas production was registered due to the inhibition caused by the accumulation of volatile fatty acids. No significant differences in the organic matter removal efficiencies were observed for the two total solids contents studied.


Bioresource Technology | 2016

Biomethanization of sugar beet byproduct by semi-continuous single digestion and co-digestion with cow manure.

Kaoutar Aboudi; C. Álvarez-Gallego; Luis Isidoro Romero-García

Dried pellet of exhausted sugar beet cossettes were digested alone and combined with cow manure as co-substrate in a mesophilic semi-continuous anaerobic system. In single digestion assay, the stable biogas production and stable reactor operation was observed at the hydraulic retention time (HRT) of 20days (OLR: 3.26gVS/Lreactord) which was the minimum HRT tolerated by the system. However, co-digestion with cow manure allowed to decrease the HRT until 15days (OLR: 4.97gVS/Lreactord) with 32% higher biogas generation and efficient reactor operation. Propionic acid was the predominant VFA observed during single digestion assay failure, while acetic acid accumulation was observed in the co-digestion assay. In both single and co-digestion assays, the recovery of digesters was possible by ceasing the feeding and re-inoculation with a well-adapted inoculum.


Journal of Bioscience and Bioengineering | 2016

Evaluation of methane generation and process stability from anaerobic co-digestion of sugar beet by-product and cow manure.

Kaoutar Aboudi; C. Álvarez-Gallego; Luis Isidoro Romero-García

The effect of mesophilic anaerobic co-digestion of dried pellets of exhausted sugar beet cossettes (ESBC-DP) and cow manure (CM) on the enhancement of methane generation and process stability were studied with the aim to select the best substrate mixture ratio. A series of batch experiments was conducted using the following five mixture ratios of ESBC-DP:CM: 0:100; 25:75; 50:50; 75:25 and 100:0. Best results were obtained from mixture ratios with ESBC-DP proportions in the range of 25-50%. Mixture ratio of 50:50 showed a specific methane production (SMP) increase of 81.4% and 25.5%, respectively, in comparison with mono-digestion of ESBC-DP and CM. Evolution of the indirect parameter named acidogenic substrate as carbon (ASC) could be used to provide more insight about the process stability of anaerobic digestion. ASC accumulation was observed in reactors with higher ESBC-DP proportions leading to a delay in VFAs consumption and conversion into methane.


International Journal of Molecular Sciences | 2015

Thermochemical Pretreatments of Organic Fraction of Municipal Solid Waste from a Mechanical-Biological Treatment Plant

C. Álvarez-Gallego; Luis Alberto Fdez-Güelfo; María de los Ángeles Romero Aguilar; Luis Isidoro Romero García

The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160–180–200 °C, 3.5–5.0–6.5 bar and 2–3–4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process.

Collaboration


Dive into the C. Álvarez-Gallego's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vinay Kumar Tyagi

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

D. Sales

University of Cádiz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge