C. André Lévesque
Agriculture and Agri-Food Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. André Lévesque.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Keith A. Seifert; Robert A. Samson; Jeremy R. deWaard; Jos Houbraken; C. André Lévesque; Jean-Marc Moncalvo; Gerry Louis-Seize; Paul D. N. Hebert
DNA barcoding systems employ a short, standardized gene region to identify species. A 648-bp segment of mitochondrial cytochrome c oxidase 1 (CO1) is the core barcode region for animals, but its utility has not been tested in fungi. This study began with an examination of patterns of sequence divergences in this gene region for 38 fungal taxa with full CO1 sequences. Because these results suggested that CO1 could be effective in species recognition, we designed primers for a 545-bp fragment of CO1 and generated sequences for multiple strains from 58 species of Penicillium subgenus Penicillium and 12 allied species. Despite the frequent literature reports of introns in fungal mitochondrial genomes, we detected introns in only 2 of 370 Penicillium strains. Representatives from 38 of 58 species formed cohesive assemblages with distinct CO1 sequences, and all cases of sequence sharing involved known species complexes. CO1 sequence divergences averaged 0.06% within species, less than for internal transcribed spacer nrDNA or β-tubulin sequences (BenA). CO1 divergences between species averaged 5.6%, comparable to internal transcribed spacer, but less than values for BenA (14.4%). Although the latter gene delivered higher taxonomic resolution, the amplification and alignment of CO1 was simpler. The development of a barcoding system for fungi that shares a common gene target with other kingdoms would be a significant advance.
Fungal Biology | 2004
C. André Lévesque; Arthur W.A.M. de Cock
The phylogeny of 116 species and varieties of Pythium was studied using parsimony and phenetic analysis of the ITS region of the nuclear ribosomal DNA. The D1, D2 and D3 regions of the adjacent large subunit nuclear ribosomal DNA of half the Pythium strains were also sequenced and gave a phylogeny congruent with the ITS data. All the 40 presently available ex-type strains were included in this study, as well as 20 sequences of recently described species from GenBank. Species for which no ex-type strains were available were represented by either authentic strains (6), strains used in the 1981 monograph of the genus by van der Plaats-Niterink (33), or strains selected on morphological criteria (17). Parsimony analysis generated two major clades representing the Pythium species with filamentous or globose sporangia. A small clade of species with contiguous sporangia was found in between the two main clades. A total number of 11 smaller clades was recognized, which often correlated with host-type or substrate and in several cases with a subset of morphological characters. Many characters used in species descriptions, such as antheridium position, did not correlate with phylogeny. A comparison of the ex-type and representative strains with all ITS sequences of Pythium in GenBank revealed limited infraspecific variation with the exception of P. rostratum, P. irregulare, P. heterothallicum, and P. ultimum. The total number of species examined was 116 (including 60 ex-type strains). Twenty-six species had ITS sequences identical or nearly identical to formerly described species, suggesting possible conspecificity. The importance of comparing ITS sequences of putative new species to the now available ITS database in order to avoid unwarranted new species names being introduced.
Genome Biology | 2010
C. André Lévesque; Henk Brouwer; Liliana M. Cano; John P. Hamilton; Carson Holt; Edgar Huitema; Sylvain Raffaele; Gregg P. Robideau; Marco Thines; Joe Win; Marcelo M. Zerillo; Jeffrey L. Boore; Dana Busam; Bernard Dumas; Steve Ferriera; Susan I. Fuerstenberg; Claire M. M. Gachon; Elodie Gaulin; Francine Govers; Laura J. Grenville-Briggs; Neil R. Horner; Jessica B. Hostetler; Rays H. Y. Jiang; Justin Johnson; Theerapong Krajaejun; Haining Lin; Harold J. G. Meijer; Barry Moore; Paul F. Morris; Vipaporn Phuntmart
BackgroundPythium ultimum is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species.ResultsThe P. ultimum genome (42.8 Mb) encodes 15,290 genes and has extensive sequence similarity and synteny with related Phytophthora species, including the potato blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86% of genes, with detectable differential expression of suites of genes under abiotic stress and in the presence of a host. The predicted proteome includes a large repertoire of proteins involved in plant pathogen interactions, although, surprisingly, the P. ultimum genome does not encode any classical RXLR effectors and relatively few Crinkler genes in comparison to related phytopathogenic oomycetes. A lower number of enzymes involved in carbohydrate metabolism were present compared to Phytophthora species, with the notable absence of cutinases, suggesting a significant difference in virulence mechanisms between P. ultimum and more host-specific oomycete species. Although we observed a high degree of orthology with Phytophthora genomes, there were novel features of the P. ultimum proteome, including an expansion of genes involved in proteolysis and genes unique to Pythium. We identified a small gene family of cadherins, proteins involved in cell adhesion, the first report of these in a genome outside the metazoans.ConclusionsAccess to the P. ultimum genome has revealed not only core pathogenic mechanisms within the oomycetes but also lineage-specific genes associated with the alternative virulence and lifestyles found within the pythiaceous lineages compared to the Peronosporaceae.
Molecular Ecology Resources | 2011
Gregg P. Robideau; Arthur W.A.M. de Cock; Michael D. Coffey; Hermann Voglmayr; H. Brouwer; Kanak Bala; David W. Chitty; Nicole L. Désaulniers; Quinn A. Eggertson; Claire M. M. Gachon; Chia-Hui Hu; Frithjof C. Küpper; Tara L. Rintoul; Ehab Sarhan; Els C. P. Verstappen; Yonghong Zhang; P.J.M. Bonants; Jean Beagle Ristaino; C. André Lévesque
Oomycete species occupy many different environments and many ecological niches. The genera Phytophthora and Pythium for example, contain many plant pathogens which cause enormous damage to a wide range of plant species. Proper identification to the species level is a critical first step in any investigation of oomycetes, whether it is research driven or compelled by the need for rapid and accurate diagnostics during a pathogen outbreak. The use of DNA for oomycete species identification is well established, but DNA barcoding with cytochrome c oxidase subunit I (COI) is a relatively new approach that has yet to be assessed over a significant sample of oomycete genera. In this study we have sequenced COI, from 1205 isolates representing 23 genera. A comparison to internal transcribed spacer (ITS) sequences from the same isolates showed that COI identification is a practical option; complementary because it uses the mitochondrial genome instead of nuclear DNA. In some cases COI was more discriminative than ITS at the species level. This is in contrast to the large ribosomal subunit, which showed poor species resolution when sequenced from a subset of the isolates used in this study. The results described in this paper indicate that COI sequencing and the dataset generated are a valuable addition to the currently available oomycete taxonomy resources, and that both COI, the default DNA barcode supported by GenBank, and ITS, the de facto barcode accepted by the oomycete and mycology community, are acceptable and complementary DNA barcodes to be used for identification of oomycetes.
Phytopathology | 1998
C. André Lévesque; Colleen E. Harlton; Arthur W.A.M. de Cock
ABSTRACT An assay was developed that can identify unknown isolates of Pythium or Phytophthora species in a single hybridization. This reverse dot blot system is based on arrays of species-specific amplified fragments or oligonucleotides derived from the internal transcribed spacer (ITS) region, which are blotted as dots on a nylon membrane. By using total DNA from a sample as the template, universal primers, and digoxigenin-dUTP, the ITS was amplified and labeled simultaneously by the polymerase chain reaction (PCR). A small aliquot of the resultant labeled and amplified product was used as a probe for hybridization to a dot blot membrane that contained the immobilized species-specific oligonucleotides or amplified PCR fragments. The reverse dot blot system based on arrays of oligonucleotides showed far fewer cross-hybridizations than one based on entire amplified ITS I fragments. Unknown species can be identified simply by visualizing the positive hybridization reaction between the DNA labeled directly from the sample and the immobilized specific oligonucleotide. Currently, the assay can be used to identify Pythium aphanidermatum, P. ultimum, P. acanthicum, and Phytophthora cinnamomi. An oligonucleotide that was originally designed to identify Phytophthora hybridized to 10 of the 14 Phytophthora species tested. Another oligonucleotide designed to identify oomycetes hybridized to the 68 species tested, which represented two of the four orders of this phylum.
Fems Microbiology Letters | 2003
Bart Lievens; Margreet Brouwer; Alfons C.R.C. Vanachter; C. André Lévesque; Bruno P. A. Cammue; B.P.H.J. Thomma
Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici, and Verticillium wilt, caused by either Verticillium albo-atrum or Verticillium dahliae, are devastating diseases of tomato (Lycopersicon esculentum) found worldwide. Monitoring is the cornerstone of integrated pest management of any disease. The lack of rapid, accurate, and reliable means by which plant pathogens can be detected and identified is one of the main limitations in integrated disease management. In this paper, we describe the development of a molecular detection system, based on DNA array technology, for rapid and efficient detection of these vascular wilt pathogens. We show the utility of this array for the sensitive detection of these pathogens from complex substrates like soil, plant tissues and irrigation water, and samples that are collected by tomato growers in their greenhouses.
Mycologia | 2000
Guus Bakkeren; Agri-Food Canada; James W. Kronstad; C. André Lévesque
We have compared the use of DNA se- quences from the genomic internal transcribed spac- er (ITS) ribosomal RNA region, with a newer meth- od, the amplified fragment length polymorphism (AFLP) technique. ITS sequences encompass only a small part of the genome but normally reveal suffi- cient variability to distinguish isolates at the genus and often the species level. Although the AFLP tech- nology reveals genome-wide restriction fragment length polymorphisms, it has not been employed ex- tensively in establishing phylogenetic relationships. We have adapted the AFLP technology for fungal ge- nomes and compared AFLP fingerprints generated from several fungal species and isolates from the or- der Ustilaginales: Ustilago hordei, U. nigra, U. aegilop- sidis, U. avenae, U. kolleri, U. bullata, U. nuda, U. tritici, U. maydis, U. scitaminea, Sporisorium reilianum, and Tilletiales: Tilletia indica and T walkeri. Geo- graphical isolates of U. hordei and related species, particularly those infecting small-grain cereals, were difficult to distinguish when comparing ITS sequenc- es, but were clearly separated when comparing AFLP fingerprints. The abundance of polymorphisms makes the AFLP technique more suitable to distin- guish organisms in clusters of closely related species and at the isolate level. Phylogenetic analyses of the data sets generated with the two methods revealed that the AFLP-derived phylogenetic relationships were not in disagreement with the ITS-derived tree. The fungal phylogenetic tree correlated additionally with one from the graminaceous hosts generated
Fungal Diversity | 2014
Kevin D. Hyde; R. Henrik Nilsson; S. Aisyah Alias; Hiran A. Ariyawansa; Jaime E. Blair; Lei Cai; Arthur W.A.M. de Cock; Asha J. Dissanayake; Sally L. Glockling; Ishani D. Goonasekara; Michał Gorczak; Matthias Hahn; Ruvishika S. Jayawardena; Jan A. L. van Kan; Matthew H. Laurence; C. André Lévesque; Xinghong Li; Jian-Kui Liu; Sajeewa S. N. Maharachchikumbura; Dimuthu S. Manamgoda; Frank N. Martin; Eric H. C. McKenzie; Alistair R. McTaggart; Peter E. Mortimer; Prakash V. R. Nair; Julia Pawłowska; Tara L. Rintoul; Roger G. Shivas; Christoffel F. J. Spies; Brett A. Summerell
Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper.
Fungal Biology | 2001
Sharon N. de Jong; C. André Lévesque; G.J.M. Verkley; Edwin C.A. Abeln; James E. Rahe; P. Gordon Braun
Three fungal species responsible for anthracnose canker, perennial canker, and bulls-eye rot of apple have been considered members of the genus Pezicula for a number of years. Recent studies, however, have provided evidence to (re-)classify these species as Neofabraea . There has been a long historical debate regarding the taxonomy of two of these fungi. In Europe, both Neofabraea malicorticis and N. perennans have generally been considered N. malicorticis , while in North America a species distinction has been maintained. Phylogenetic analyses of Neofabraea isolates were based on DNA sequences of the internal transcribed spacer region of nuclear rDNA (38 isolates), the mitochondrial rDNA small subunit (partial; 48 isolates), the β-tubulin gene (partial; 25 isolates), and a combined data set (21 isolates). Our work provides evidence for the existence of four distinct Neofabraea apple pathogens including N. malicorticis , N. perennans , N. alba , and a putative new Neofabraea species that was isolated in both Europe and eastern North America. Our results indicate that the primary Neofabraea species causing tree cankers and bulls-eye rot in North America are N. malicorticis and N. perennans in the west, and N. alba in eastern Canada. N. perennans , N. alba , and the undescribed Neofabraea species were found in Europe but the presence of N. malicorticis was not confirmed by our limited sampling. Inclusion of Rosa spp. in the host range of N. malicorticis is merited.
Fungal Biology | 2003
Andrew M. Schurko; Leonel Mendoza; C. André Lévesque; Nicole L. Désaulniers; Arthur W.A.M. de Cock; Glen R. Klassen
Sequence analysis of the ribosomal DNA internal transcribed spacers (ITS) was used to establish phylogenetic relationships among 23 isolates of Pythium insidiosum, the etiological agent of pythiosis in mammals. The isolates were divided into three distinct clades that exhibited significant geographic isolation. Clade I consisted of isolates from North, Central, and South America, while clade II contained isolates from Asia and Australia. Also present in clade II was an isolate from a patient in the USA, but the origin of the infection may have been in the Middle East. Clade III was comprised of isolates from Thailand and the USA. All 23 P. insidiosum isolates were more closely related to each other than to any other Pythium species in this study. Additionally, all Pythium isolates formed a clade separate from both outgroup species, Phytophthora megasperma and Lagenidium giganteum. The ITS sequence results tend to support the existence of geographic variants or cryptic speciation within P. insidiosum. The sequence information obtained also provides an abundance of data for applications in the diagnosis of pythiosis and identification of P. insidiosum from clinical samples.