C. Andrew Stewart
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Andrew Stewart.
Nature | 2012
Sergei I. Grivennikov; Kepeng Wang; Daniel Mucida; C. Andrew Stewart; Bernd Schnabl; Dominik Jauch; Koji Taniguchi; Guann Yi Yu; Christoph H. Österreicher; Kenneth E. Hung; Christian Datz; Ying Feng; Eric R. Fearon; Mohamed Oukka; Lino Tessarollo; Vincenzo Coppola; Felix Yarovinsky; Hilde Cheroutre; Lars Eckmann; Giorgio Trinchieri; Michael Karin
Approximately 2% of colorectal cancer is linked to pre-existing inflammation known as colitis-associated cancer, but most develops in patients without underlying inflammatory bowel disease. Colorectal cancer often follows a genetic pathway whereby loss of the adenomatous polyposis coli (APC) tumour suppressor and activation of β-catenin are followed by mutations in K-Ras, PIK3CA and TP53, as the tumour emerges and progresses. Curiously, however, ‘inflammatory signature’ genes characteristic of colitis-associated cancer are also upregulated in colorectal cancer. Further, like most solid tumours, colorectal cancer exhibits immune/inflammatory infiltrates, referred to as ‘tumour-elicited inflammation’. Although infiltrating CD4+ TH1 cells and CD8+ cytotoxic T cells constitute a positive prognostic sign in colorectal cancer, myeloid cells and T-helper interleukin (IL)-17-producing (TH17) cells promote tumorigenesis, and a ‘TH17 expression signature’ in stage I/II colorectal cancer is associated with a drastic decrease in disease-free survival. Despite its pathogenic importance, the mechanisms responsible for the appearance of tumour-elicited inflammation are poorly understood. Many epithelial cancers develop proximally to microbial communities, which are physically separated from immune cells by an epithelial barrier. We investigated mechanisms responsible for tumour-elicited inflammation in a mouse model of colorectal tumorigenesis, which, like human colorectal cancer, exhibits upregulation of IL-23 and IL-17. Here we show that IL-23 signalling promotes tumour growth and progression, and development of a tumoural IL-17 response. IL-23 is mainly produced by tumour-associated myeloid cells that are likely to be activated by microbial products, which penetrate the tumours but not adjacent tissue. Both early and late colorectal neoplasms exhibit defective expression of several barrier proteins. We propose that barrier deterioration induced by colorectal-cancer-initiating genetic lesions results in adenoma invasion by microbial products that trigger tumour-elicited inflammation, which in turn drives tumour growth.
Science | 2013
Noriho Iida; Amiran Dzutsev; C. Andrew Stewart; Loretta Smith; Nicolas Bouladoux; Rebecca A. Weingarten; Daniel A. Molina; Rosalba Salcedo; Timothy C. Back; Sarah D. Cramer; Ren-Ming Dai; Hiu Kiu; Marco Cardone; Shruti Naik; Anil K. Patri; Ena Wang; Francesco M. Marincola; Karen M. Frank; Yasmine Belkaid; Giorgio Trinchieri; Romina S. Goldszmid
The Microbiota Makes for Good Therapy The gut microbiota has been implicated in the development of some cancers, such as colorectal cancer, but—given the important role our intestinal habitants play in metabolism—they may also modulate the efficacy of certain cancer therapeutics. Iida et al. (p. 967) evaluated the impact of the microbiota on the efficacy of an immunotherapy [CpG (the cytosine, guanosine, phosphodiester link) oligonucleotides] and oxaliplatin, a platinum compound used as a chemotherapeutic. Both therapies were reduced in efficacy in tumor-bearing mice that lacked microbiota, with the microbiota important for activating the innate immune response against the tumors. Viaud et al. (p. 971) found a similar effect of the microbiota on tumor-bearing mice treated with cyclophosphamide, but in this case it appeared that the microbiota promoted an adaptive immune response against the tumors. The gut microbiota promote the efficacy of several antineoplastic agents in mice. The gut microbiota influences both local and systemic inflammation. Inflammation contributes to development, progression, and treatment of cancer, but it remains unclear whether commensal bacteria affect inflammation in the sterile tumor microenvironment. Here, we show that disruption of the microbiota impairs the response of subcutaneous tumors to CpG-oligonucleotide immunotherapy and platinum chemotherapy. In antibiotics-treated or germ-free mice, tumor-infiltrating myeloid-derived cells responded poorly to therapy, resulting in lower cytokine production and tumor necrosis after CpG-oligonucleotide treatment and deficient production of reactive oxygen species and cytotoxicity after chemotherapy. Thus, optimal responses to cancer therapy require an intact commensal microbiota that mediates its effects by modulating myeloid-derived cell functions in the tumor microenvironment. These findings underscore the importance of the microbiota in the outcome of disease treatment.
Immunological Reviews | 2001
John Trowsdale; Roland Barten; Anja Haude; C. Andrew Stewart; Stephan Beck; Michael J. Wilson
Summary: The two sets of inhibitory and activating natural killer (NK) receptor genes belong either to the Ig or to the C‐type lectin superfamilies. Both are extensive and diverse, comprising genes of varying degrees of relatedness, indicative of a process of iterative duplication. We have constructed gene maps to help understand how and when NK receptor genes developed and the nature of their polymorphism. A cluster of over 15 C‐type lectin genes, the natural killer complex is located on human chromosome 12p13.1, syntenic with a region in mouse that borders multiple Ly49 loci. The equivalent locus in man is occupied by a single pseudogene, LY49L. The immunoglobulin superfamily of loci, the leukocyte receptor complex (LRC), on chromosome 19q13.4, contains many polymorphic killer cell immunoglobulin‐like receptor (KIR) genes as well as multiple related sequences. These include immunoglobulin‐like transcript (ILT) (or leukocyte immunoglobulin‐like receptor genes), leukocyte‐associated inhibitory receptor genes (LAIR), NKp46, FcαR and the platelet glycoprotein receptor VI locus, which encodes a collagen‐binding molecule. KIRs are expressed mostly on NK cells and some T cells. The other LRC loci are more widely expressed. Further centromeric of the LRC are sets of additional loci with weak sequence similarity to the KIRs, including the extensive CD66(CEA) and Siglec families. The LRC‐syntenic region in mice contains no orthologues of KIRs. Some of the KIR genes are highly polymorphic in terms of sequence as well as for presence/absence of genes on different haplotypes. Some anchor loci, such as KIR2DL4, are present on most haplotypes. A few ILT loci, such as ILT5 and ILT8, are polymorphic, but only ILT6 exhibits presence/absence variation. This knowledge of the genomic organisation of the extensive NK superfamilies underpins efforts to understand the functions of the encoded NK receptor molecules. It leads to the conclusion that the functional homology of human KIR and mouse Ly49 genes arose by convergent evolution. NK receptor immunogenetics has interesting parallels with the major histocompatibility complex (MHC) in which some of the polymorphic genes are ligands for NK molecules. There are hints of an ancient genetic relationship between NK receptor genes and MHC‐paralogous regions on chromosomes 1, 9 and 19. The picture that emerges from both complexes is of eternal evolutionary restlessness, presumably in response to resistance to disease.
Journal of Experimental Medicine | 2003
Huei Wei Chan; Zoya B. Kurago; C. Andrew Stewart; Michael J. Wilson; Maureen P. Martin; Brian E. Mace; Mary Carrington; John Trowsdale; Charles T. Lutz
Killer immunoglobulin-like receptors (KIR) bind self–major histocompatibility complex class I molecules, allowing natural killer (NK) cells to recognize aberrant cells that have down-regulated class I. NK cells express variable numbers and combinations of highly homologous clonally restricted KIR genes, but uniformly express KIR2DL4. We show that NK clones express both 2DL4 alleles and either one or both alleles of the clonally restricted KIR 3DL1 and 3DL2 genes. Despite allele-independent expression, 3DL1 alleles differed in the core promoter by only one or two nucleotides. Allele-specific 3DL1 gene expression correlated with promoter and 5′ gene DNA hypomethylation in NK cells in vitro and in vivo. The DNA methylase inhibitor, 5-aza-2′-deoxycytidine, induced KIR DNA hypomethylation and heterogeneous expression of multiple KIR genes. Thus, NK cells use DNA methylation to maintain clonally restricted expression of highly homologous KIR genes and alleles.
PLOS Genetics | 2006
James A. Traherne; Roger Horton; Anne N. Roberts; Marcos M Miretti; C. Andrew Stewart; Jennifer L. Ashurst; Alexey Atrazhev; Penny Coggill; Sophie Palmer; J. P. Almeida; Sarah Sims; Laurens Wilming; Jane Rogers; Pieter J. de Jong; Mary Carrington; John F. Elliott; Stephen Sawcer; John A. Todd; John Trowsdale; Stephan Beck
The major histocompatibility complex (MHC) is recognised as one of the most important genetic regions in relation to common human disease. Advancement in identification of MHC genes that confer susceptibility to disease requires greater knowledge of sequence variation across the complex. Highly duplicated and polymorphic regions of the human genome such as the MHC are, however, somewhat refractory to some whole-genome analysis methods. To address this issue, we are employing a bacterial artificial chromosome (BAC) cloning strategy to sequence entire MHC haplotypes from consanguineous cell lines as part of the MHC Haplotype Project. Here we present 4.25 Mb of the human haplotype QBL (HLA-A26-B18-Cw5-DR3-DQ2) and compare it with the MHC reference haplotype and with a second haplotype, COX (HLA-A1-B8-Cw7-DR3-DQ2), that shares the same HLA-DRB1, -DQA1, and -DQB1 alleles. We have defined the complete gene, splice variant, and sequence variation contents of all three haplotypes, comprising over 259 annotated loci and over 20,000 single nucleotide polymorphisms (SNPs). Certain coding sequences vary significantly between different haplotypes, making them candidates for functional and disease-association studies. Analysis of the two DR3 haplotypes allowed delineation of the shared sequence between two HLA class II–related haplotypes differing in disease associations and the identification of at least one of the sites that mediated the original recombination event. The levels of variation across the MHC were similar to those seen for other HLA-disparate haplotypes, except for a 158-kb segment that contained the HLA-DRB1, -DQA1, and -DQB1 genes and showed very limited polymorphism compatible with identity-by-descent and relatively recent common ancestry (<3,400 generations). These results indicate that the differential disease associations of these two DR3 haplotypes are due to sequence variation outside this central 158-kb segment, and that shuffling of ancestral blocks via recombination is a potential mechanism whereby certain DR–DQ allelic combinations, which presumably have favoured immunological functions, can spread across haplotypes and populations.
Journal of Clinical Investigation | 2013
C. Andrew Stewart; Hannah Metheny; Noriho Iida; Loretta Smith; Miranda Hanson; Folkert Steinhagen; Robert M. Leighty; Axel Roers; Christopher L. Karp; Werner Müller; Giorgio Trinchieri
The capacity of IL-10 and Tregs in the inflammatory tumor microenvironment to impair anticancer Th1 immunity makes them attractive targets for cancer immunotherapy. IL-10 and Tregs also suppress Th17 activity, which is associated with poor prognosis in several cancers. However, previous studies have overlooked their potential contribution to the regulation of pathogenic cancer-associated inflammation. In this study, we investigated the origin and function of IL-10–producing cells in the tumor microenvironment using transplantable tumor models in mice. The majority of tumor-associated IL-10 was produced by an activated Treg population. IL-10 production by Tregs was required to restrain Th17-type inflammation. Accumulation of activated IL-10+ Tregs in the tumor required type I IFN signaling but not inflammatory signaling pathways that depend on TLR adapter protein MyD88 or IL-12 family cytokines. IL-10 production limited Th17 cell numbers in both spleen and tumor. However, type I IFN was required to limit Th17 cells specifically in the tumor microenvironment, reflecting selective control of tumor-associated Tregs by type I IFN. Thus, the interplay of type I IFN, Tregs, and IL-10 is required to negatively regulate Th17 inflammation in the tumor microenvironment. Therapeutic interference of this network could therefore have the undesirable consequence of promoting Th17 inflammation and cancer growth.
Journal of Immunology | 2003
C. Andrew Stewart; Jeroen van Bergen; John Trowsdale
The killer Ig-like receptors (KIR) are a family of highly related MHC class I receptors that show extreme genetic polymorphism both within the human population and between closely related primate species, suggestive of rapid evolutionary diversification. Most KIR are expressed in a variegated fashion by the NK population, giving rise to an NK repertoire of specificities for MHC class I. We compared the promoter for KIR3DL1, which exhibits variegated gene expression, with that for KIR2DL4, which is expressed by all NK cell clones. Maximum transcriptional activity of each was encoded within ∼270 bp upstream of the translation initiation codon. The KIR2DL4 promoter drove reporter gene expression only in NK cells, while the KIR3DL1 promoter was active in a range of cell types, suggesting that the latter requires other regulatory elements for physiological expression. In NK cells, reporter gene expression driven by the KIR2DL4 promoter was greater than that driven by the KIR3DL1 promoter. DNase I footprinting revealed that transcription factor binding sites differ between the two promoters. The data indicate that while the promoters of these two KIR genes share 67% nucleotide identity, they have evolved distinct properties consistent with different roles in regulating the generation of NK repertoire.
Molecular Therapy | 2012
Alexey Berezhnoy; C. Andrew Stewart; James O McNamara; William H. Thiel; Paloma H. Giangrande; Giorgio Trinchieri; Eli Gilboa
Interleukin-10 (IL-10) is a key suppressor of inflammation in chronic infections and in cancer. In mice, the inability of the immune system to clear viral infections or inhibit tumor growth can be reversed by antibody-mediated blockade of IL-10 action. We used a modified selection protocol to isolate RNA-based, nuclease-resistant, aptamers that bind to the murine IL-10 receptor. After 5 rounds of selection high-throughput sequencing (HTS) was used to analyze the library. Using distribution statistics on about 11 million sequences, aptamers were identified which bound to IL-10 receptor in solution with low K(d). After 12 rounds of selection the predominant IL-10 receptor-binding aptamer identified in the earlier rounds remained, whereas other high-affinity aptamers were not detected. Prevalence of certain nucleotide (nt) substitutions in the sequence of a high-affinity aptamer present in round 5 was used to deduce its secondary structure and guide the truncation of the aptamer resulting in a shortened 48-nt long aptamer with increased affinity. The aptamer also bound to IL-10 receptor on the cell surface and blocked IL-10 function in vitro. Systemic administration of the truncated aptamer was capable of inhibiting tumor growth in mice to an extent comparable to that of an anti- IL-10 receptor antibody.Interleukin-10 (IL-10) is a key suppressor of inflammation in chronic infections and in cancer. In mice, the inability of the immune system to clear viral infections or inhibit tumor growth can be reversed by antibody-mediated blockade of IL-10 action. We used a modified selection protocol to isolate RNA-based, nuclease-resistant, aptamers that bind to the murine IL-10 receptor. After 5 rounds of selection high-throughput sequencing (HTS) was used to analyze the library. Using distribution statistics on about 11 million sequences, aptamers were identified which bound to IL-10 receptor in solution with low Kd. After 12 rounds of selection the predominant IL-10 receptor-binding aptamer identified in the earlier rounds remained, whereas other high-affinity aptamers were not detected. Prevalence of certain nucleotide (nt) substitutions in the sequence of a high-affinity aptamer present in round 5 was used to deduce its secondary structure and guide the truncation of the aptamer resulting in a shortened 48-nt long aptamer with increased affinity. The aptamer also bound to IL-10 receptor on the cell surface and blocked IL-10 function in vitro. Systemic administration of the truncated aptamer was capable of inhibiting tumor growth in mice to an extent comparable to that of an anti- IL-10 receptor antibody.
Gastroenterology | 2014
Miranda L. Hanson; Julie A. Hixon; Wenqing Li; Barbara K. Felber; Miriam R. Anver; C. Andrew Stewart; Brian M. Janelsins; Sandip K. Datta; Wei Shen; Mairi H. McLean; Scott K. Durum
BACKGROUND & AIMS Treatment of inflammatory bowel disease would benefit from specific targeting of therapeutics to the intestine. We developed a strategy for localized delivery of the immunosuppressive cytokine interleukin (IL)-27, which is synthesized actively in situ by the food-grade bacterium Lactococcus lactis (LL-IL-27), and tested its ability to reduce colitis in mice. METHODS The 2 genes encoding mouse IL-27 were synthesized with optimal codon use for L lactis and joined with a linker; a signal sequence was added to allow for product secretion. The construct was introduced into L lactis. Colitis was induced via transfer of CD4(+)CD45RB(hi) T cells into Rag(-/-) mice to induce colitis; 7.5 weeks later, LL-IL-27 was administered to mice via gavage. Intestinal tissues were collected and analyzed. RESULTS LL-IL-27 administration protected mice from T-cell transfer-induced enterocolitis and death. LL-IL-27 reduced disease activity scores, pathology features of large and small bowel, and levels of inflammatory cytokines in colonic tissue. LL-IL-27 also reduced the numbers of CD4(+) and IL-17(+) T cells in gut-associated lymphoid tissue. The effects of LL-IL-27 required production of IL-10 by the transferred T cells. LL-IL-27 was more effective than either LL-IL-10 or systemic administration of recombinant IL-27 in reducing colitis in mice. LL-IL-27 also reduced colitis in mice after administration of dextran sodium sulfate. CONCLUSIONS LL-IL-27 reduces colitis in mice by increasing the production of IL-10. Mucosal delivery of LL-IL-27 could be a more effective and safer therapy for inflammatory bowel disease.
European Journal of Immunology | 2005
Jeroen van Bergen; C. Andrew Stewart; Peter J. van den Elsen; John Trowsdale
Killer Ig‐like receptors (KIR) are important for the recognition and elimination of diseased cells by human NK cells. Myeloid leukemia patients given a hematopoietic stem cell transplantation, for example, benefit from KIR‐mediated NK alloreactivity directed against the leukemia cells. To establish an effective NK cell repertoire, most KIR genes are expressed stochastically, independently of the others. However, the sequences upstream of the coding regions of these KIR genes are highly homologous to the recently identified KIR3DL1 promoter (91.1–99.6% sequence identity), suggesting that they are regulated by similar if not identical mechanisms of transcriptional activation. We investigated the effects of small sequence differences between the KIR3DL1 promoter and other KIR promoters on transcription factor binding and promoter activity. Surprisingly, electrophoretic mobility shift assays and promoter‐reporter assays revealed significant structural and functional differences in the cis‐acting elements of these highly homologous KIR promoters, suggesting a key role for transcription factors in independent control of expression of specific KIR loci. Thus, the KIR repertoire may be shaped by a combination of both gene‐specific and stochastic mechanisms.