C. Annette Johnson
Swiss Federal Institute of Aquatic Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Annette Johnson.
Science | 2006
René P. Schwarzenbach; Beate I. Escher; Kathrin Fenner; Thomas B. Hofstetter; C. Annette Johnson; Urs von Gunten; Bernhard Wehrli
The increasing worldwide contamination of freshwater systems with thousands of industrial and natural chemical compounds is one of the key environmental problems facing humanity. Although most of these compounds are present at low concentrations, many of them raise considerable toxicological concerns, particularly when present as components of complex mixtures. Here we review three scientific challenges in addressing water-quality problems caused by such micropollutants. First, tools to assess the impact of these pollutants on aquatic life and human health must be further developed and refined. Second, cost-effective and appropriate remediation and water-treatment technologies must be explored and implemented. Third, usage and disposal strategies, coupled with the search for environmentally more benign products and processes, should aim to minimize introduction of critical pollutants into the aquatic environment.
Science | 2013
Luis Rodríguez-Lado; Guifan Sun; Michael Berg; Qiang Zhang; Hanbin Xue; Quanmei Zheng; C. Annette Johnson
Arsenic and Populace The solubility of arsenic in groundwater aquifers is controlled by a number of hydrologic and geochemical factors. In rural communities that rely on groundwater for drinking water, the risk from exposure may pose a public health threat, especially when groundwater pumping can increase arsenic solubility. In an effort to provide a focused assessment of risk to arsenic exposure from groundwater, Rodríguez-Lado et al. (p. 866; see the Perspective by Michael) constructed a geostatistical model that incorporates a number of factors that control arsenic solubility across China. Most of the risk centers in a few provinces—Xinjiang, Inner Mongolia, Henan, Shandong, and Jiangsu—but the total population exposed to arsenic levels above 10 micrograms per liter could be upwards of 19 million people. A predictive map of arsenic in Chinese groundwater aquifers reveals a potential health risk to 19.6 million people. [Also see Perspective by Michael] Arsenic-contaminated groundwater used for drinking in China is a health threat that was first recognized in the 1960s. However, because of the sheer size of the country, millions of groundwater wells remain to be tested in order to determine the magnitude of the problem. We developed a statistical risk model that classifies safe and unsafe areas with respect to geogenic arsenic contamination in China, using the threshold of 10 micrograms per liter, the World Health Organization guideline and current Chinese standard for drinking water. We estimate that 19.6 million people are at risk of being affected by the consumption of arsenic-contaminated groundwater. Although the results must be confirmed with additional field measurements, our risk model identifies numerous arsenic-affected areas and highlights the potential magnitude of this health threat in China.
Journal of Contaminant Hydrology | 1999
C. Annette Johnson; Michael Kaeppeli; Sandro Brandenberger; Andrea Ulrich; Werner Baumann
The leachate composition of the Landfill Lostorf, Buchs, Switzerland has been examined as a function rain events and dry periods between November 1994 and November 1996. Discharge and electrical conductivity of the central drainage discharge were monitored continuously, whilst samples for chemical analysis were taken at discrete intervals. The average total concentrations of Na, Cl, K, Mg, Ca and SO4 are 44.5, 47.1, 11.8, 0.63, 8.2 and 12.4 mM, respectively. During rain events, the leachate is diluted by the preferential flow of rainwater into the drainage discharge. Drainage discharge pH values range between 8.68 and 11.28, the latter under dry conditions. Thermodynamic calculations indicate that CaSO4, ettringite (3CaOAl2O3CaSO4·32H2O) and Al(OH)3 may control the concentrations of the components Ca, SO4 and Al. Dissolved Si may be in thermodynamic equilibrium with either Ca silicate hydrate or imogolite. Cadmium, Mo, V, Mn and Zn are also diluted during rain events and concentration changes agree with those of conductivity (representing the major constituents). Average concentrations are 0.012, 5.4, 2.3, 0.085, and 0.087 μM, respectively. Components such as Al, Cu, Sb and Cr increase in concentration with increased discharge. Average concentrations are 1.6, 0.27 and 0.21 μM, respectively. For Cu, the explanation lies in its affinity for total organic carbon (TOC). Thermodynamic calculations indicate that whilst dissolution/precipitation reactions with metal hydroxides and carbonates can explain the observed concentrations of Cd, sorption and complexation reactions probably influence the concentrations of Cu, Pb (average measurable concentration 0.013 μM), Zn and Mn. For the oxyanion species such as MoO4 and WO4 (average concentration 0.61 μM), it is probable that Ca metallate formation plays a dominant role in determining concentration ranges. Geochemical processes appear to determine concentration ranges and the hydrological factors, the fluctuations in concentration.
Atmospheric Environment | 1987
C. Annette Johnson; Laura Sigg; Jürg Zobrist
Abstract In order to study the mechanisms governing the composition of fogwater, sequential samples were taken during two fog events over several hours and analyzed chemically. In addition, preliminary measurements of gases (HCl, HNO 3 , NH 3 ) and aerosols (H 2 SO 4 , NH 4 NO 3 , NH 4 Cl and ammonium sulfates) were made. The uptake of gaseous HCl in the fog droplets was a major source of acidity: in extreme cases pH values of 2.08 and 1.94 and Cl − concentrations up to 10 −2 M were observed. HCl originated from a local source, most probably a refuse incinerator from which plumes of the stack gas reached the sampling site. The NH + 4 , NO − 3 and SO −2 4 concentrations (in the range of 0.1–2 mrnol l −1 ) were regulated by the inputs of aerosols and the liquid water content of the fog. The contribution of dissolved S(IV) (0.06–0.27 mmol l −1 ) to the total aqueous sulfur varied with time, according to the pH-dependent solubility of SO 2 and to oxidation reactions.
Journal of Contaminant Hydrology | 1998
C. Annette Johnson; Gérald A. Richner; Tomas Vitvar; Nina Schittli; Mark Eberhard
The objective of the investigation of the municipal solid waste incinerator (MSWI) bottom ash landfill, Landfill Lostorf, was to determine the residence time of water in the landfill and the flow paths through the landfill. Over a period of 22 months, measurements of rainfall, landfill discharge and leachate electrical conductivity were recorded and tracer experiments made. Over the yearly period 1995, approximately 50% of the incident rainfall was measured in the discharge. An analysis of single rain events showed that in winter, 90–100% of rainfall was expressed in the landfill discharge, whereas in summer months, the value was between 9 and 40% depending on the intensity of the rain event. The response to rainfall was rapid. Within 30–100 h, approximately 50% of water discharged in response to a rain event had left the landfill. The discharge was less than 4 l/min for approximately 50% of the measurement periods. Qualitative tracer studies with fluorescein, pyranine and iodide clearly showed the existence of preferential flow paths. This was further substantiated by quantitative tracer studies of single rain events using 18O/16O ratios and electrical conductivity measurements. The proportion of rainwater passing directly through the landfill was found to be between 20 and 80% in summer months and around 10% in winter months. The difference has been ascribed to the water content in the landfill. The average residence time of the water within the landfill has been estimated to be roughly 3 years and this water is the predominant component in the discharge over a yearly period.
Environmental Science & Technology | 2012
Vanessa Sternitzke; Ralf Kaegi; Jean-Nicolas Audinot; Erik Lewin; Janet G. Hering; C. Annette Johnson
Hydroxyapatite (Ca(10)(PO(4))(6)(OH)(2), HAP), both as a synthetic material and as a constituent of bone char, can serve as an effective and relatively inexpensive filter material for fluoride (F(-)) removal from drinking water in low-income countries. Fluoride uptake on HAP can occur through different mechanisms, which are, in principle, influenced by solution composition. Suspensions of HAP (2 g L(-1)) were equilibrated under controlled pH conditions (pH 6.5, 7.3, 9.5) at 25 °C for 28 d after the addition of different F(-) concentrations (0.5-7.0 mM). The reacted HAP solids were examined with Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and Nano Secondary Ion Mass Spectroscopy (NanoSIMS). Fluoride uptake on HAP was dependent on pH, with the highest capacity at pH 6.5; the lowest uptake was found at pH 9.5. Under all experimental conditions, the thermodynamically stable mineral phase was fluorapatite, (Ca(10)(PO(4))(6)F(2), FAP). Fluoride uptake capacity was quantified on the basis of FTIR and XPS analysis, which was consistent with F(-) uptake from solution. The results of XPS and NanoSIMS analyses indicate that a fluoridated surface layer with a thickness of several nanometers is formed on nanosized HAP.
Applied Geochemistry | 1997
Michael Kersten; H. Christoph Moor; C. Annette Johnson
Abstract Trace metal concentrations and speciation were determined in leachate from a municipal solid waste incinerator bottom ash landfill both experimentally and by thermodynamic model calculations. Total dissolved Cr, Sb and W concentrations determined directly by ICP-MS were up to two orders of magnitude higher than that determined upon preconcentration by an in-situ solid phase extraction technique based on 8-HQ cation exchanger which indicates oxyanion complex formation of these metals in the leachates. Speciation modeling suggests that a similar difference for Cu is caused by organic complexation. Lead and Zn concentrations determined by both methods were fairly comparable but very low, in the range 4–60 nmol l −1 . The low mobility of both metals can be modeled by assuming adsorption onto Fe-oxyhydroxides oxycoprecipitation with Ca-silicate hydrate phases. The resulting high retardation coefficients between 500 and 800 indicate that scavenging by these secondary weathering products in the MSWI bottom ash deposit can cause an efficient immobilization of both Pb and Zn.
Clays and Clay Minerals | 2006
Rama kumar Allada; Edward Peltier; Alexandra Navrotsky; William H. Casey; C. Annette Johnson; Hillary Thompson Berbeco; Donald L. Sparks
Interest in hydrotalcite-like compounds has grown due to their role in controlling the mobility of aqueous metals in the environment as well as their use as catalysts, catalyst precursors and specialty chemicals. Although these materials have been studied in a number of contexts, little is known of their thermodynamic properties. High-temperature oxide melt solution calorimetry was used to measure the standard enthalpy of formation for compounds M(II)1−xAlx(OH)2(CO3)x/2·mH2O (0.2 < x < 0.4, M(II) = Mg, Co, Ni and Zn). The enthalpy of formation of these compounds from the relevant single cation phases was also determined. The formation of HTLCs results in a 5–20 kJ/mol enthalpy stabilization from the single cation hydroxides and carbonates and water. The data are correlated to two variables: the ratio of divalent to trivalent cation in the solid (M(II)/Al) and the identity of the divalent cation. It was observed that the M(II)/Al ratio exerts a minor influence on the enthalpy of formation from single-cation phases, while greater differences in stabilization resulted from changes in the chemical nature of the divalent cation. However, the data do not support any statistically significant correlation between the composition of HTLCs and their heats of formation. Equilibrium geochemical calculations based upon the thermodynamic data illustrate the effect of HTLCs on the speciation of metals in natural waters. These calculations show that, in many cases, HTLCs form even in waters that are undersaturated with respect to the individual divalent metal hydroxides and carbonates. Phase diagrams and stability diagrams involving Ni-bearing HTLCs and the single-cation components are presented. The Ni(II) concentration as a function of pH as well as the stability diagram for the equilibrium among minerals in the CaO-NiO-Al2O3-SiO2-CO2-H2O system at 298 K are plotted.
Cement and Concrete Research | 2003
Isabel Baur; C. Annette Johnson
The Se(VI)-analogues of ettringite and monosulfate, selenate-AFt (3CaO·Al2O3·3CaSeO4·37.5H2O), and selenate-AFm (3CaO·Al2O3·CaSeO4·xH2O) were synthesised and characterised by bulk chemical analysis and X-ray diffraction. Their solubility products were determined from a series of batch and resuspension experiments conducted at 25 °C. For selenate-AFt suspensions, the pH varied between 11.37 and 11.61, and a solubility product, log Kso=61.29±0.60 (I=0 M), was determined for the reaction 3CaO·Al2O3·3CaSeO4·37.5H2O+12 H+⇔6Ca2++2Al3++3SeO42−+43.5H2O. Selenate-AFm synthesis resulted in the uptake of Na, which was leached during equilibration and resuspension. For the pH range of 11.75 to 11.90, a solubility product, log Kso=73.40±0.22 (I=0 M), was determined for the reaction 3CaO·Al2O3·CaSeO4·xH2O+12 H+⇔4Ca2++2Al3++SeO42−+(x+6)H2O. Thermodynamic modelling suggested that both selenate-AFt and selenate-AFm are stable in the cementitious matrix; and that in a cement limited in sulfate, selenate concentration may be limited by selenate-AFm to below the millimolar range above pH 12.
Environmental Science & Technology | 2010
Sabine M. Leisinger; Barbara Lothenbach; Gwenn Le Saout; Ralf Kägi; Bernhard Wehrli; C. Annette Johnson
Chromate is a toxic contaminant of potential concern, as it is quite soluble in the alkaline pH range and could be released to the environment. In cementitous systems, CrO4(2−) is thought to be incorporated as a solid solution with SO4(2−) in ettringite. The formation of a solid solution (SS) could lower the soluble CrO4(2−) concentrations. Ettringite containing SO4(2−) or CrO4(2−) and mixtures thereof have been synthesized. The resulting solids and their solubility after an equilibration time of 3 months have been characterized. For CrO4-ettringite at 25 °C, a solubility product log K(S0) of −40.2 ± 0.4 was calculated: log K(CrO4−ettringite) = 6log{Ca2+} + 2log{Al(OH)4(−)} + 3log{CrO4(2−)} + 4log{OH−} + 26log{H2O}. X-ray diffraction and the analysis of the solution indicated the formation of a regular solid solution between SO4- and CrO4-ettringite with a miscibility gap between 0.4 ≤ XCrO4 ≤ 0.6. The miscibility gap of the SO4- and CrO4-ettringite solid solution could be reproduced with a dimensionless Guggenheim fitting parameter (a0) of 2.03. The presence of a solid solution between SO4- and CrO4-ettringite results in a stabilization of the solids compared to the pure ettringites and thus in an increased uptake of CrO4(2−) in cementitious systems.
Collaboration
Dive into the C. Annette Johnson's collaboration.
Swiss Federal Institute of Aquatic Science and Technology
View shared research outputsSwiss Federal Institute of Aquatic Science and Technology
View shared research outputsSwiss Federal Institute of Aquatic Science and Technology
View shared research outputsSwiss Federal Institute of Aquatic Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Institute of Aquatic Science and Technology
View shared research outputsSwiss Federal Institute of Aquatic Science and Technology
View shared research outputs