C. Austin
Cleveland Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Austin.
Reproductive Biology and Endocrinology | 2014
Nina Desai; Stephanie Ploskonka; L.R. Goodman; C. Austin; Jeffrey M. Goldberg; Tommaso Falcone
BackgroundTime-lapse imaging combined with embryo morphokinetics may offer a non-invasive means for improving embryo selection. Data from clinics worldwide are necessary to compare and ultimately develop embryo classifications models using kinetic data. The primary objective of this study was to determine if there were kinetic differences between embryos with limited potential and those more often associated with in vitro blastocyst formation and/or implantation. We also wanted to compare putative kinetic markers for embryo selection as proposed by other laboratories to what we were observing in our own laboratory setting.MethodsKinetic data and cycle outcomes were retrospectively analyzed in patients age 39 and younger with 7 or more zygotes cultured in the Embryoscope. Timing of specific events from the point of insemination were determined using time-lapse (TL) imaging. The following kinetic markers were assessed: time to syngamy (tPNf), t2, time to two cells (c), 3c (t3), 4c ( t4), 5c (t5), 8c (t8), morula (tMor), start of blastulation (tSB); tBL, blastocyst (tBL); expanded blastocyst (tEBL). Durations of the second (cc2) and third (cc3) cell cycles, the t5-t2 interval as well as time to complete synchronous divisions s1, s2 and s3 were calculated. Incidence and impact on development of nuclear and cleavage anomalies were also assessed.ResultsA total of 648 embryos transferred on day 5 were analyzed. The clinical pregnancy and implantation rate were 72% and 50%, respectively. Morphokinetic data showed that tPNf, t2,t4, t8, s1, s2,s3 and cc2 were significantly different in embryos forming blastocysts (ET or frozen) versus those with limited potential either failing to blastulate or else forming poor quality blastocysts ,ultimately discarded. Comparison of embryo kinetics in cycles with all embryos implanting (KID+) versus no implantation (KID-) suggested that markers of embryo competence to implant may be different from ability to form a blastocyst. The incidence of multinucleation and reverse cleavage amongst the embryos observed was 25% and 7%, respectively. Over 40% of embryos exhibiting these characteristics did however form blastocysts meeting our criteria for freezing.ConclusionsThese data provide us with a platform with which to potentially enhance embryo selection for transfer.
Reproductive Biology and Endocrinology | 2013
Nina Desai; Jeffrey M. Goldberg; C. Austin; Tommaso Falcone
BackgroundThe Rapid-i is a new FDA cleared closed carrier for embryo vitrification. The cooling rate of - 1220°C/min is far lower than that reported with open vitrification systems such as the cryoloop (−15,000°C/min). Little published data is currently available on this device. This study presents our initial clinical data, as well as live birth outcomes, with the Rapid-i. The efficacy of this device for the cryopreservation of cleavage, as well as blastocyst stage human embryos is also analyzed. We further compare outcomes to those achieved with the cryoloop, an “open” vitrification system routinely used in our laboratory.MethodsHuman embryos were vitrified at either the 8–10 cell stage or else the blastocyst stage. The vitrification protocol was: 7.5% DMSO/7.5% ethylene glycol (EG) (2–3 min) followed by incubation in 15% DMSO /15% EG (45 sec) before loading on the vitrification carrier. Cryoprotectant was removed during warming by sequential washes in 0.25 M and 0.125 M sucrose in culture medium. Clinical outcome data for frozen cycles between January 2011 and August 2012 were stratified according to carrier and cell stage. The student t-test and chi square test were used to compare results. P value of < 0.05 was considered significant.ResultsA total of 486 vitrified-warmed embryos were assessed and 92% of them were transferred. The clinical pregnancy rate (CPR) and implantation rate (IR) with Rapid-i vitrified blastocysts were 59% and 49%, versus 47% and 37%, respectively for cleavage stage embryos. This was not statistically different from results with the cryoloop vitrified blastocysts (CPR 46%, IR 38%) nor the cleavage stage vitrified embryos (CPR 49%, IR 35%). To date, there have been 31 deliveries of 34 healthy infants from Rapid-i vitrified embryos, with another 12 pregnancies still on-going.ConclusionsThe Rapid-i offers an excellent alternative to existing open vitrification devices for embryo cryopreservation at the 8–10 cell stage as well as the blastocyst stage. Use of this type of “closed” sealed system that prevents direct contact between the embryos and liquid nitrogen reduces the potential risk of sample cross-contamination or infection. These preliminary data and live birth outcomes have paved the way toward transitioning to a closed vitrification system in our own IVF program.
Fertility and Sterility | 2016
Nina Desai; Stephanie Ploskonka; L.R. Goodman; Marjan Attaran; Jeffrey M. Goldberg; C. Austin; Tommaso Falcone
OBJECTIVE To identify blastocyst features independently predictive of successful pregnancy and live births with vitrified-warmed blastocysts. DESIGN Retrospective study. SETTING Academic hospital. PATIENT(S) Women undergoing a cycle with transfer of blastocysts vitrified using the Rapid-i closed carrier (n = 358). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Clinical pregnancy and live-birth rates analyzed using logistic regression analysis. RESULT(S) A total of 669 vitrified-warmed blastocysts were assessed. The survival rate was 95%. A mean of 1.7 ± 0.5 embryos were transferred. The clinical pregnancy, live-birth, and implantation rates were 55%, 46%, and 43%, respectively. The odds of clinical pregnancy (odds ratio [OR] 3.08; 95% confidence interval [CI], 1.88-5.12) and live birth (OR 2.93; 95% CI, 1.79-4.85) were three times higher with day-5 blastocysts versus slower-growing day-6 vitrified blastocysts, irrespective of patient age at cryopreservation. Blastocysts from multinucleated embryos were half as likely to result in a live birth (OR 0.46; 95% CI, 0.22-0.91). A four -fold increase in live birth was observed if an expanded blastocyst was available for transfer. The inner cell mass-trophectoderm score correlated to positive outcomes in the univariate analysis. The implantation rate was statistically significantly higher for day-5 versus day-6 vitrified blastocysts (50% vs. 29%, respectively). CONCLUSION(S) The blastocyst expansion grade after warming was predictive of successful outcomes independent of the inner cell mass or trophectoderm score. Delayed blastulation and multinucleation were independently associated with lower live-birth rates in frozen cycles. Implantation potential of the frozen blastocysts available should be included in the decision-making process regarding embryo number for transfer.
Fertility and Sterility | 2016
L.R. Goodman; Jeffrey M. Goldberg; Tommaso Falcone; C. Austin; Nina Desai
Human Reproduction | 2009
N. Desai; C. Austin; F. AbdelHafez; J. Goldfarb; T. Falcone
Journal of Assisted Reproduction and Genetics | 2012
Nina Desai; Jeffrey M. Goldberg; C. Austin; Edmund Sabanegh; Tommaso Falcone
Fertility and Sterility | 2018
Nina Desai; Jeffrey M. Goldberg; C. Austin; Tommaso Falcone
Fertility and Sterility | 2010
N. Desai; T. Falcone; J. Goldberg; C. Austin; J. Goldfarb
Fertility and Sterility | 2015
L.R. Goodman; J. Goldberg; T. Falcone; C. Austin; N. Desai
Fertility and Sterility | 2012
N. Desai; J. Goldberg; C. Austin