C. Austin Pickens
Michigan State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Austin Pickens.
Prostaglandins Leukotrienes and Essential Fatty Acids | 2015
C. Austin Pickens; Lorraine M. Sordillo; Sarah S. Comstock; William S. Harris; Kari Hortos; Bruce Kovan; Jenifer I. Fenton
The obese lipid profile is associated with increased free fatty acids and triacylglycerides. Currently, little is known about the plasma lipid species associated with obesity. In this study, we compared plasma lipid fatty acid (FA) profiles as a function of BMI. Profiling phospholipid (PL) FAs and their respective oxylipids could predict which obese individuals are more likely to suffer from diseases associated with chronic inflammation or oxidative stress. We investigated the relationship between BMI and plasma PL (PPL) FA composition in 126 men using a quantitative gas chromatography analysis. BMI was inversely associated with both PPL nervonic and linoleic acid (LA) but was positively associated with both dihomo-γ-linolenic and palmitoleic acid. Compared to lean individuals, obese participants were more likely to have ω-6 FAs, except arachidonic acid and LA, incorporated into PPLs. Obese participants were less likely to have EPA and DHA incorporated into PPLs compared to lean participants. Non-esterified plasma PUFA and oxylipid analysis showed ω-6 oxylipids were more abundant in the obese plasma pool. These ω-6 oxylipids are associated with increased angiogenesis (i.e. epoxyeicosatrienoates), reactive oxygen species (i.e. 9-hydroxyeicosatetraenoate), and inflammation resolution (i.e. Lipoxin A4). In summary, BMI is directly associated with specific PPL FA and increased ω-6 oxylipids.
Cancer Epidemiology, Biomarkers & Prevention | 2016
C. Austin Pickens; Ami Lane-Elliot; Sarah S. Comstock; Jenifer I. Fenton
Background: Altered lipid metabolism and plasma fatty acid (FA) levels are associated with colorectal cancer. Obesity and elevated waist circumference (WC) increase the likelihood of developing precancerous colon adenomas. Methods: Venous blood was collected from 126 males, ages 48 to 65 years, who received routine colonoscopies. Plasma phospholipid (PPL) FAs were isolated, derivatized, and then analyzed using gas chromatography. ORs and 95% confidence intervals were determined using polytomous logistic regression after adjusting for confounding factors [i.e., age, smoking, WC, and body mass index (BMI)]. Results: PPL palmitic acid (PA) was inversely correlated with the presence of colon adenomas (P = 0.01). For each unit increase in palmitoleic acid (OR, 3.75; P = 0.04) or elaidic acid (OR, 2.92; P = 0.04), an individual was more likely to have adenomas relative to no colon polyps. Higher enzyme activity estimates (EAE) of stearoyl-CoA desaturase-1 (SCD-1; P = 0.02) and elongation of very long chain fatty acids protein-6 (ELOVL-6; P = 0.03) were associated with an individual being approximately 1.5 times more likely to have an adenoma compared with no polyps. Conclusions: PPL FAs and EAEs, which have previously been associated with colorectal cancer, are significantly different in those with adenomas when compared with those without polyps. PPL PA, elaidic acid, and SCD-1 and ELOVL-6 EAEs are associated with adenomas independent of BMI and WC. Impact: PPL PA, elaidic acid, and SCD-1 and ELOVL-6 EAEs are associated with adenomas even after adjusting for obesity-related risk factors and may function as novel biomarkers of early colorectal cancer risk. Cancer Epidemiol Biomarkers Prev; 25(3); 498–506. ©2015 AACR.
PLOS ONE | 2016
C. Austin Pickens; Karen H. Matsuo; Jenifer I. Fenton
Obesity, in particular abdominal obesity, alters the composition of plasma and tissue fatty acids (FAs), which contributes to inflammation and insulin resistance. FA metabolism is modulated by desaturases and may affect adipokine and insulin secretion. Therefore, we examined relationships between adipokines, a marker of insulin production, and plasma FA desaturase enzyme activity estimates (EAEs) in obesity. Plasma phospholipid (PPL) FAs were isolated from 126 males (ages 48 to 65 years), derivatized, and analyzed using gas chromatography. Delta-6 desaturase (D6D) and delta-5 desaturase (D5D) EAEs were calculated as the ratio of PPL 20:3/18:2 and 20:4/20:3, respectively. In body mass index (BMI) and waist circumference (WC) adjusted polytomous logistic regression analyses, PPL FAs and FA desaturase EAEs were associated with C-peptide and adiponectin. Individuals with elevated D6D EAEs were less likely (OR 0.33) to have serum adiponectin concentrations > 5.37 μg/mL, compared with adiponectin concentrations ≤ 3.62 μg/mL. Individuals with increased D5D EAEs were less likely (OR 0.8) to have C-peptide concentrations ≥ 3.32 ng/mL, and > 1.80 and ≤ 3.29 ng/mL, compared with those with C-peptide ≤ 1.76 ng/mL. The proinflammatory cytokine tumor necrosis factor-α (TNF- α) was positively associated with C-peptide, but TNF- α was not associated with the D5D EAE. C-peptide and adiponectin concentrations are associated with specific PPL FAs and FA desaturase EAEs. The relationship between C-peptide concentrations and D5D EAEs remained significant after adjusting for BMI, WC, and TNF-α. Thus, future research should investigate whether D5D inhibition may occur through a C-peptide mediated pathway.
Scientific Reports | 2017
C. Austin Pickens; Ana I. Vazquez; A. Daniel Jones; Jenifer I. Fenton
Obesity is associated with dysregulated lipid metabolism and adipokine secretion. Our group has previously reported obesity and adipokines are associated with % total fatty acid (FA) differences in plasma phospholipids. The objective of our current study was to identify in which complex lipid species (i.e., phosphatidylcholine, sphingolipids, etc) these FA differences occur. Plasma lipidomic profiling (n = 126, >95% Caucasian, 48–65 years) was performed using chromatographic separation and high resolution tandem mass spectrometry. The responses used in the statistical analyses were body mass index (BMI), waist circumference (WC), serum adipokines, cytokines, and a glycemic marker. High-dimensional statistical analyses were performed, all models were adjusted for age and smoking, and p-values were adjusted for false discovery. In Bayesian models, the lipidomic profiles (over 1,700 lipids) accounted for >60% of the inter-individual variation of BMI, WC, and leptin in our population. Across statistical analyses, we report 51 individual plasma lipids were significantly associated with obesity. Obesity was inversely associated lysophospholipids and ether linked phosphatidylcholines. In addition, we identify several unreported lipids associated with obesity that are not present in lipid databases. Taken together, these results provide new insights into the underlying biology associated with obesity and reveal new potential pathways for therapeutic targeting.
PLOS ONE | 2018
Mary Adjepong; C. Austin Pickens; Raghav Jain; William S. Harris; Reginald Annan; Jenifer I. Fenton
In Northern Ghana, 33% of children are stunted due to economic disparities. Dietary fatty acids (FA) are critical for growth, but whether blood FA levels are adequate in Ghanaian children is unknown. The objective of this study was to determine the association between whole blood FAs and growth parameters in Northern Ghanaian children 2–6 years of age. A drop of blood was collected on an antioxidant treated card and analyzed for FA composition. Weight and height were measured and z-scores were calculated. Relationships between FAs and growth parameters were analyzed by Spearman correlations, linear regressions, and factor analysis. Of the 307 children who participated, 29.7% were stunted and 8% were essential FA deficient (triene/tetraene ratio>0.02). Essential FA did not differ between stunted and non-stunted children and was not associated with height-for-age z-score (HAZ) or weight-for-age z-score (WAZ). In hemoglobin adjusted regression models, both HAZ and WAZ were positively associated with arachidonic acid (p≤0.01), dihomo-gamma-linolenic acid (DGLA, p≤0.05), docosatetraenoic acid (p≤0.01) and the ratio of DGLA/linoleic acid (p≤0.01). These data add to the growing body of evidence indicating n-6 FAs are critical in childhood linear growth. Our findings provide new insights into the health status of an understudied Northern Ghanaian population.
International Journal of Food Sciences and Nutrition | 2018
Kelly Valentini; C. Austin Pickens; Jason A. Wiesinger; Jenifer I. Fenton
Abstract Supplementation with omega-3 (n-3) fatty acids may improve cognitive performance and protect against cognitive decline. However, changes in brain phospholipid fatty acid composition after supplementation with n-3 fatty acids are poorly described. The purpose of this study was to feed increasing n-3 fatty acids and characterise the changes in brain phospholipid fatty acid composition and correlate the changes with red blood cells (RBCs) and plasma in mice. Increasing dietary docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) did not alter brain DHA. Brain EPA increased and total n-6 polyunsaturated fatty acids decreased across treatment groups, and correlated with fatty acid changes in the RBC (r > 0.7). Brain cis-monounsaturated fatty acids oleic and nervonic acid (p < .01) and saturated fatty acids arachidic, behenic, and lignoceric acid (p < .05) also increased. These brain fatty acid changes upon increasing n-3 intake should be further investigated to determine their effects on cognition and neurodegenerative disease.
Journal of Nutritional Biochemistry | 2018
Raghav Jain; C. Austin Pickens; Jenifer I. Fenton
Obesity is a state of chronic inflammation influenced by lipids such as fatty acids and their secondary oxygenated metabolites deemed oxylipids. Many such lipid mediators serve as potent signaling molecules of inflammation, which can further alter lipid metabolism and lead to carcinogenesis. For example, sphingosine-1-phosphate activates cyclooxygenase-2 in endothelial cells resulting in the conversion of arachidonic acid (AA) to prostaglandin E2 (PGE2). PGE2 promotes colon cancer cell growth. In contrast, the less studied path of AA oxygenation via cytochrome p450 enzymes produces epoxyeicosatetraenoic acids (EETs), whose anti-inflammatory properties cause shrinking of enlarged adipocytes, a characteristic of obesity, through the liberation of fatty acids. It is now thought that EET depletion occurs in obesity and may contribute to colon cell carcinogenesis. Meanwhile, gangliosides, a type of sphingolipid, are cell surface signaling molecules that contribute to the apoptosis of colon tumor cells. Many of these discoveries have been made recently and the mechanisms are still not fully understood, leading to an exciting new chapter of lipidomic research. In this review, mechanisms behind obesity-associated colon cancer are discussed with a focus on the role of small lipid signaling molecules in the process. Specifically, changes in lipid metabolite levels during obesity and the development of colon cancer, as well as novel biomarkers and targets for therapy, are discussed.
International Journal of Food Sciences and Nutrition | 2018
Emily A. Davidson; C. Austin Pickens; Jenifer I. Fenton
Abstract Delta-5 (D5D) and delta-6 (D6D) desaturase are key enzymes in fatty acid (FA) metabolism. Dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may alter tissue FA composition via D5D and D6D. The purpose was to determine the relationship between dietary EPA + DHA, estimated desaturase activities of various tissues and the reflection of desaturase activity in the red blood cell (RBC). Mice were fed diets with increasing percent of energy from EPA + DHA. Phospholipid FA composition of heart, muscle, spleen, lung, adipose tissues and RBC were analysed. D5D and D6D enzyme activity estimates (EAE) were calculated as the ratio of 20:4/20:3 and 20:3/18:2, respectively. D5D EAE decreased in all tissues, except muscle, with increasing dietary EPA + DHA. RBC D5D EAE positively correlated with D5D EAE in all tissues. RBC D6D EAE positively correlated with muscle and inversely correlated with adipose D6D EAE. Our findings suggest differential influence of dietary EPA + DHA upon tissue desaturase activities.
Journal of Food Composition and Analysis | 2016
Theresia Jumbe; C. Austin Pickens; Kelly Valentini; Mary Adjepong; Wei Li; Joyce Kinabo; Jenifer I. Fenton
Journal of Food Composition and Analysis | 2017
Mary Adjepong; Kelly Valentini; C. Austin Pickens; Wei Li; William Appaw; Jenifer I. Fenton