Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Brandau is active.

Publication


Featured researches published by C. Brandau.


Physics Letters B | 2008

Observation of non-exponential orbital electron capture decays of hydrogen-like 140Pr and 142Pm ions

Yu. A. Litvinov; F. Bosch; N. Winckler; D. Boutin; H. G. Essel; T. Faestermann; H. Geissel; Sebastian Hess; P. Kienle; R. Knöbel; C. Kozhuharov; J. Kurcewicz; L. Maier; K. Beckert; P. Beller; C. Brandau; L. Chen; C. Dimopoulou; B. Fabian; A. Fragner; E. Haettner; M. Hausmann; S. Litvinov; M. Mazzocco; F. Montes; A. Musumarra; C. Nociforo; F. Nolden; W.R. Plaß; A. Prochazka

Abstract We report on time-modulated two-body weak decays observed in the orbital electron capture of hydrogen-like 140 Pr 59+ and 142 Pm 60+ ions coasting in an ion storage ring. Using non-destructive single ion, time-resolved Schottky mass spectrometry we found that the expected exponential decay is modulated in time with a modulation period of about 7 seconds for both systems. Tentatively this observation is attributed to the coherent superposition of finite mass eigenstates of the electron neutrinos from the weak decay into a two-body final state.


Physical Review Letters | 2007

Measurement of the {beta}{sup +} and Orbital Electron-Capture Decay Rates in Fully Ionized, Hydrogenlike, and Heliumlike {sup 140}Pr Ions

Yu. A. Litvinov; F. Bosch; H. Geissel; J. Kurcewicz; Z. Patyk; N. Winckler; L. Batist; K. Beckert; D. Boutin; C. Brandau; Lie-Wen Chen; C. Dimopoulou; B. Fabian; T. Faestermann; A. Fragner; L. V. Grigorenko; E. Haettner; Sebastian Hess; P. Kienle; R. Knöbel; C. Kozhuharov; S. Litvinov; L. Maier; M. Mazzocco; F. Montes; G. Münzenberg; A. Musumarra; C. Nociforo; F. Nolden; M. Pfützner

We report on the first measurement of the beta+ and orbital electron-capture decay rates of 140Pr nuclei with the simplest electron configurations: bare nuclei, hydrogenlike, and heliumlike ions. The measured electron-capture decay constant of hydrogenlike 140Pr58+ ions is about 50% larger than that of heliumlike 140Pr57+ ions. Moreover, 140Pr ions with one bound electron decay faster than neutral 140Pr0+ atoms with 59 electrons. To explain this peculiar observation one has to take into account the conservation of the total angular momentum, since only particular spin orientations of the nucleus and of the captured electron can contribute to the allowed decay.


Astrophysical Journal Supplement Series | 1999

Dielectronic recombination in photoionized gas. II. Laboratory measurements for Fe xviii and Fe xix

Daniel Wolf Savin; Steven M. Kahn; J. Linkemann; A. A. Saghiri; M. Schmitt; M. Grieser; R. Repnow; D. Schwalm; A. Wolf; T. Bartsch; C. Brandau; A. Hoffknecht; A. Müller; S. Schippers; M. H. Chen; N. R. Badnell

In photoionized gases with cosmic abundances, dielectronic recombination (DR) proceeds primarily via nlj ) nl@j@ core excitations (*n \ 0 DR). We have measured the resonance strengths and energies for Fe XVIII to Fe XVII and Fe XIX to Fe XVIII *n \ 0 DR. Using our measurements, we have calculated the Fe XVIII and Fe XIX *n \ 0 DR rate coefficients. Signi—cant discrepancies exist between our inferred rates and those of published calculations. These calculations overestimate the DR rates by factors of D 2o r underestimate it by factors of D2 to orders of magnitude, but none are in good agreement with our results. Almost all published DR rates for modeling cosmic plasmas are computed using the same theo- retical techniques as the above-mentioned calculations. Hence, our measurements call into question all theoretical *n \ 0 DR rates used for ionization balance calculations of cosmic plasmas. At temperatures where the Fe XVIII and Fe XIX fractional abundances are predicted to peak in photoionized gases of cosmic abundances, the theoretical rates underestimate the Fe XVIII DR rate by a factor of D2 and over- estimate the Fe XIX DR rate by a factor of D1.6. We have carried out new multicon—guration Dirac- Fock and multicon—guration Breit-Pauli calculations which agree with our measured resonance strengths and rate coefficients to within typically better than We provide a —t to our inferred rate coeffi- (30%. cients for use in plasma modeling. Using our DR measurements, we infer a factor of D2 error in the Fe XX through Fe XXIV *n \ 0 DR rates. We investigate the eUects of this estimated error for the well- known thermal instability of photoionized gas. We —nd that errors in these rates cannot remove the instability, but they do dramatically aUect the range in parameter space over which it forms. Subject headings: atomic dataatomic processesgalaxies: activeinstabilitiesX-rays: general


Physics Letters B | 2013

High-resolution measurement of the time-modulated orbital electron capture and of the β+ decay of hydrogen-like 142Pm60+ ions

P. Kienle; F. Bosch; P. Bühler; T. Faestermann; Yu. A. Litvinov; N. Winckler; M. S. Sanjari; Daria Shubina; Dinko Atanasov; H. Geissel; V. Ivanova; X.L. Yan; D. Boutin; C. Brandau; I. Dillmann; Ch. Dimopoulou; R Hess; P.-M. Hillebrand; T. Izumikawa; R. Knöbel; J. Kurcewicz; N. Kuzminchuk; M. Lestinsky; S. Litvinov; X. W. Ma; L. Maier; M. Mazzocco; I. Mukha; C. Nociforo; F. Nolden

Abstract The periodic time modulations, found recently in the two-body orbital electron capture (EC) decay of both, hydrogen-like 140Pr58+ and 142Pm60+ ions, with periods near to 7 s and amplitudes of about 20%, were re-investigated for the case of 142Pm60+ by using a 245 MHz resonator cavity with a much improved sensitivity and time resolution. We observed that the exponential EC decay is modulated with a period T = 7.11 ( 11 ) s , in accordance with a modulation period T = 7.12 ( 11 ) s as obtained from simultaneous observations with a capacitive pick-up, employed also in the previous experiments. The modulation amplitudes amount to a R = 0.107 ( 24 ) and a P = 0.134 ( 27 ) for the 245 MHz resonator and the capacitive pick-up, respectively. These new results corroborate for both detectors exactly our previous findings of modulation periods near to 7 s , though with distinctly smaller amplitudes. Also the three-body β + decays have been analyzed. For a supposed modulation period near to 7 s we found an amplitude a = 0.027 ( 27 ) , compatible with a = 0 and in agreement with the preliminary result a = 0.030 ( 30 ) of our previous experiment. These observations could point at weak interaction as origin of the observed 7 s -modulation of the EC decay. Furthermore, the data suggest that interference terms occur in the two-body EC decay, although the neutrinos are not directly observed.


Physical Review A | 2008

Nuclear deformation effect on the binding energies in heavy ions

Y. S. Kozhedub; O.V. Andreev; V. M. Shabaev; I. I. Tupitsyn; C. Brandau; Ch. Kozhuharov; G. Plunien; Thomas Stöhlker

Nuclear deformation effects on the binding energies in heavy ions are investigated. Approximate formulas for the nuclear-size correction and the isotope shift for deformed nuclei are derived. Combined with direct numerical evaluations, these formulas are employed to reanalyze experimental data on the nuclear-charge-distribution parameters in


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2000

Recombination in electron coolers

A. Wolf; G. Gwinner; J. Linkemann; A. A. Saghiri; M. Schmitt; D. Schwalm; M. Grieser; M. Beutelspacher; T. Bartsch; C. Brandau; A. Hoffknecht; A. Müller; S. Schippers; O. Uwira; Daniel Wolf Savin

^{238}\text{U}


Physical Review A | 2000

Dielectronic recombination of lithiumlike Ni 2 5 + ions: High-resolution rate coefficients and influence of external crossed electric and magnetic fields

S. Schippers; T. Bartsch; C. Brandau; A. Müller; G. Gwinner; G. Wissler; M. Beutelspacher; M. Grieser; A. Wolf; R. A. Phaneuf

and to revise the nuclear-size corrections to the binding energies in H- and Li-like


Journal of Physics B | 1998

Photorecombination of ions: search for interference effects, recombination at low energies and rate coefficient in plasmas

S. Schippers; T. Bartsch; C. Brandau; G. Gwinner; J. Linkemann; A. Müller; A. A. Saghiri; A. Wolf

^{238}\text{U}


Astronomy and Astrophysics | 2004

Experimental Mg IX photorecombination rate coefficient

S. Schippers; M. Schnell; C. Brandau; S. Kieslich; A. Müller; A. Wolf

. As a result, the theoretical uncertainties for the ground-state Lamb shift in


Physical Review C | 2013

Schottky mass measurements of heavy neutron-rich nuclides in the element range 70 <= Z <= 79 at the GSI Experimental Storage Ring

Daria Shubina; Burcu R. Cakirli; Yuri A. Litvinov; Klaus Blaum; C. Brandau; F. Bosch; J.J. Carroll; R. F. Casten; D. M. Cullen; I. J. Cullen; A. Y. Deo; B. Detwiler; C. Dimopoulou; F. Farinon; H. Geissel; E. Haettner; M. Heil; R.S. Kempley; C. Kozhuharov; R. Knöbel; J. Kurcewicz; N. Kuzminchuk; S. Litvinov; Z. Liu; R. S. Mao; C. Nociforo; F. Nolden; Z. Patyk; W. R. Plass; A. Prochazka

{^{238}\text{U}}^{91+}

Collaboration


Dive into the C. Brandau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Nolden

GSI Helmholtz Centre for Heavy Ion Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Geissel

GSI Helmholtz Centre for Heavy Ion Research

View shared research outputs
Top Co-Authors

Avatar

U. Spillmann

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

S. Hagmann

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Yu. A. Litvinov

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge