Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Buddie Mullins is active.

Publication


Featured researches published by C. Buddie Mullins.


Journal of the American Chemical Society | 2012

Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N.

Son Hoang; Sean P. Berglund; Nathan T. Hahn; Allen J. Bard; C. Buddie Mullins

We report a synergistic effect involving hydrogenation and nitridation cotreatment of TiO(2) nanowire (NW) arrays that improves the water photo-oxidation performance under visible light illumination. The visible light (>420 nm) photocurrent of the cotreated TiO(2) is 0.16 mA/cm(2) and accounts for 41% of the total photocurrent under simulated AM 1.5 G illumination. Electron paramagnetic resonance (EPR) spectroscopy reveals that the concentration of Ti(3+) species in the bulk of the TiO(2) following hydrogenation and nitridation cotreatment is significantly higher than that of the sample treated solely with ammonia. It is believed that the interaction between the N-dopant and Ti(3+) is the key to the extension of the active spectrum and the superior visible light water photo-oxidation activity of the hydrogenation and nitridation cotreated TiO(2) NW arrays.


Nano Letters | 2012

Visible Light Driven Photoelectrochemical Water Oxidation on Nitrogen-Modified TiO2 Nanowires

Son Hoang; Siwei Guo; Nathan T. Hahn; Allen J. Bard; C. Buddie Mullins

We report hydrothermal synthesis of single crystalline TiO(2) nanowire arrays with unprecedented small feature sizes of ~5 nm and lengths up to 4.4 μm on fluorine-doped tin oxide substrates. A substantial amount of nitrogen (up to 1.08 atomic %) can be incorporated into the TiO(2) lattice via nitridation in NH(3) flow at a relatively low temperature (500 °C) because of the small cross-section of the nanowires. The low-energy threshold of the incident photon to current efficiency (IPCE) spectra of N-modified TiO(2) samples is at ~520 nm, corresponding to 2.4 eV. We also report a simple cobalt treatment for improving the photoelectrochemical (PEC) performance of our N-modified TiO(2) nanowire arrays. With the cobalt treatment, the IPCE of N-modified TiO(2) samples in the ultraviolet region is restored to equal or higher values than those of the unmodified TiO(2) samples, and it remains as high as ~18% at 450 nm. We propose that the cobalt treatment enhances PEC performance via two mechanisms: passivating surface states on the N-modified TiO(2) surface and acting as a water oxidation cocatalyst.


Journal of the American Chemical Society | 2014

Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting

William D. Chemelewski; Heung-Chan Lee; Jung-Fu Lin; Allen J. Bard; C. Buddie Mullins

Reaching the goal of economical photoelectrochemical (PEC) water splitting will likely require the combination of efficient solar absorbers with high activity electrocatalysts for the hydrogen and oxygen evolution reactions (HER and OER). Toward this goal, we synthesized an amorphous FeOOH (a-FeOOH) phase that has not previously been studied as an OER catalyst. The a-FeOOH films show activity comparable to that of another OER cocatalyst, Co-borate (Co-Bi), in 1 M Na2CO3, reaching 10 mA/cm(2) at an overpotential of ∼550 mV for 10 nm thick films. Additionally, the a-FeOOH thin films absorb less than 3% of the solar photons (AM1.5G) with energy greater than 1.9 eV, are homogeneous over large areas, and act as a protective layer separating the solution from the solar absorber. The utility of a-FeOOH in a realistic system is tested by depositing on amorphous Si triple junction solar cells with a photovoltaic efficiency of 6.8%. The resulting a-FeOOH/a-Si devices achieve a total water splitting efficiency of 4.3% at 0 V vs RHE in a three-electrode configuration and show no decrease in efficiency over the course of 4 h.


Journal of the American Chemical Society | 2013

Combined Charge Carrier Transport and Photoelectrochemical Characterization of BiVO4 Single Crystals: Intrinsic Behavior of a Complex Metal Oxide

Alexander J. E. Rettie; Heung Chan Lee; Luke G. Marshall; Jung-Fu Lin; Cigdem Capan; Jeffrey Lindemuth; John S. McCloy; Jianshi Zhou; Allen J. Bard; C. Buddie Mullins

Bismuth vanadate (BiVO4) is a promising photoelectrode material for the oxidation of water, but fundamental studies of this material are lacking. To address this, we report electrical and photoelectrochemical (PEC) properties of BiVO4 single crystals (undoped, 0.6% Mo, and 0.3% W:BiVO4) grown using the floating zone technique. We demonstrate that a small polaron hopping conduction mechanism dominates from 250 to 400 K, undergoing a transition to a variable-range hopping mechanism at lower temperatures. An anisotropy ratio of ~3 was observed along the c axis, attributed to the layered structure of BiVO4. Measurements of the ac field Hall effect yielded an electron mobility of ~0.2 cm(2) V(-1) s(-1) for Mo and W:BiVO4 at 300 K. By application of the Gärtner model, a hole diffusion length of ~100 nm was estimated. As a result of low carrier mobility, attempts to measure the dc Hall effect were unsuccessful. Analyses of the Raman spectra showed that Mo and W substituted for V and acted as donor impurities. Mott-Schottky analysis of electrodes with the (001) face exposed yielded a flat band potential of 0.03-0.08 V versus the reversible H2 electrode, while incident photon conversion efficiency tests showed that the dark coloration of the doped single crystals did not result in additional photocurrent. Comparison of these intrinsic properties to those of other metal oxides for PEC applications gives valuable insight into this material as a photoanode.


Journal of the American Chemical Society | 2011

Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material

Aaron M. Chockla; Justin T. Harris; Vahid A. Akhavan; Timothy D. Bogart; Vincent C. Holmberg; Chet Steinhagen; C. Buddie Mullins; Keith J. Stevenson; Brian A. Korgel

A nonwoven fabric with paperlike qualities composed of silicon nanowires is reported. The nanowires, made by the supercritical-fluid-liquid-solid process, are crystalline, range in diameter from 10 to 50 nm with an average length of >100 μm, and are coated with a thin chemisorbed polyphenylsilane shell. About 90% of the nanowire fabric volume is void space. Thermal annealing of the nanowire fabric in a reducing environment converts the polyphenylsilane coating to a carbonaceous layer that significantly increases the electrical conductivity of the material. This makes the nanowire fabric useful as a self-supporting, mechanically flexible, high-energy-storage anode material in a lithium ion battery. Anode capacities of more than 800 mA h g(-1) were achieved without the addition of conductive carbon or binder.


Accounts of Chemical Research | 2009

Surface Science Investigations of Oxidative Chemistry on Gold

Jinlong Gong; C. Buddie Mullins

Because of golds resistance to oxidation and corrosion, historically chemists have considered this metal inert. However, decades ago, researchers discovered that highly dispersed gold particles on metal oxides are highly chemically active, particularly in low-temperature CO oxidations. These seminal findings spurred considerable interest in investigations and applications of gold-based materials. Since the discovery of golds chemical activity at the nanoscale, researchers found that bulk gold also has interesting catalytic properties. Thus, it is important to understand and contrast the intrinsic chemical properties of bulk gold with those of nanoparticle Au. Despite numerous studies, the structure and active site of supported Au nanoclusters and the active oxygen species remain elusive, and model studies under well-controlled conditions could help identify these species. The {111} facet has the lowest surface energy and is the most stable and prevalent configuration of most supported gold nanoparticles. Therefore, a molecular-level understanding of the physical properties and surface chemistry of Au(111) could provide mechanistic details regarding the nature of Au-based catalysts and lead to improved catalytic processes. This Account focuses on our current understanding of oxidative chemistry on well-defined gold single crystals, predominantly from recent investigations on Au(111) that we have performed using modern surface science techniques. Our model system strategy allows us to control reaction conditions, which assists in the identification of reaction intermediates, the determination of the elementary reaction steps, and the evaluation of reaction energetics for rate-limiting steps. We have employed temperature-programmed desorption (TPD), molecular beam reactive scattering (MBRS), and Auger electron spectroscopy (AES) to evaluate surface oxidative chemistry. In some cases, we have combined these results with density functional theory (DFT) calculations. By controlling the reaction parameters that determine product selectivity, we have examined the chemical properties of bulk gold. Based on our investigations, the surface-bound oxygen atoms are metastable at low temperature. We also demonstrate that the oxygen atoms and formed hydroxyls are responsible for some of the distinct chemical behavior of gold and participate in surface reactions either as a Brønsted base or a nucleophilic base. We observe similar reaction patterns on gold surfaces to those on copper and silver surfaces, suggesting that the acid-base reactions that have been observed on copper and silver may also occur on gold. Our model chemical studies on gold surfaces have provided intrinsic fundamental insights into high surface area gold-based catalysts and the origin of the reactive oxygen species.


ACS Nano | 2010

Reactive Ballistic Deposition of α-Fe2O3 Thin Films for Photoelectrochemical Water Oxidation

Nathan T. Hahn; Heechang Ye; David W. Flaherty; Allen J. Bard; C. Buddie Mullins

We report the preparation of alpha-Fe2O3 electrodes using a technique known as reactive ballistic deposition in which iron metal is evaporatively deposited in an oxygen ambient for photoelectrochemical (PEC) water oxidation. By manipulating synthesis parameters such as deposition angle, film thickness, and annealing temperature, we find that it is possible to optimize the structural and morphological properties of such films in order to improve their PEC efficiency. Incident photon to current conversion efficiencies (IPCE) are used to calculate an AM1.5 photocurrent of 0.55 mA/cm(2) for optimized films with an IPCE reaching 10% at 420 nm in 1 M KOH at +0.5 V versus Ag/AgCl. We also note that the commonly observed low photoactivity of extremely thin hematite films on fluorine-doped tin oxide substrates may be improved by modification of annealing conditions in some cases.


Journal of the American Chemical Society | 2008

Water-Enhanced Low-Temperature CO Oxidation and Isotope Effects on Atomic Oxygen-Covered Au(111)

Rotimi A. Ojifinni; Nathan S. Froemming; Jinlong Gong; Ming Pan; Tae S. Kim; J. M. White; Graeme Henkelman; C. Buddie Mullins

Water-oxygen interactions and CO oxidation by water on the oxygen-precovered Au(111) surface were studied by using molecular beam scattering techniques, temperature-programmed desorption (TPD), and density functional theory (DFT) calculations. Water thermally desorbs from the clean Au(111) surface with a peak temperature of approximately 155 K; however, on a surface with preadsorbed atomic oxygen, a second water desorption peak appears at approximately 175 K. DFT calculations suggest that hydroxyl formation and recombination are responsible for this higher temperature desorption feature. TPD spectra support this interpretation by showing oxygen scrambling between water and adsorbed oxygen adatoms upon heating the surface. In further support of these experimental findings, DFT calculations indicate rapid diffusion of surface hydroxyl groups at temperatures as low as 75 K. Regarding the oxidation of carbon monoxide, if a C (16)O beam impinges on a Au(111) surface covered with both atomic oxygen ( (16)O) and isotopically labeled water (H 2 (18)O), both C (16)O (16)O and C (16)O (18)O are produced, even at surface temperatures as low as 77 K. Similar experiments performed by impinging a C (16)O beam on a Au(111) surface covered with isotopic oxygen ( (18)O) and deuterated water (D 2 (16)O) also produce both C (16)O (16)O and C (16)O (18)O but less than that produced by using (16)O and H 2 (18)O. These results unambiguously show the direct involvement and promoting role of water in CO oxidation on oxygen-covered Au(111) at low temperatures. On the basis of our experimental results and DFT calculations, we propose that water dissociates to form hydroxyls (OH and OD), and these hydroxyls react with CO to produce CO 2. Differences in water-oxygen interactions and oxygen scrambling were observed between (18)O/H 2 (16)O and (18)O/D 2 (16)O, the latter producing less scrambling. Similar differences were also observed in water reactivity toward CO oxidation, in which less CO 2 was produced with (16)O/D 2 (16)O than with (16)O/H 2 (16)O. These differences are likely due to primary kinetic isotope effects due to the differences in O-H and O-D bond energies.


ACS Nano | 2012

Improving the Stability of Nanostructured Silicon Thin Film Lithium-Ion Battery Anodes through Their Controlled Oxidation

Paul R. Abel; Yong Mao Lin; Hugo Celio; Adam Heller; C. Buddie Mullins

Silicon and partially oxidized silicon thin films with nanocolumnar morphology were synthesized by evaporative deposition at a glancing angle, and their performance as lithium-ion battery anodes was evaluated. The incorporated oxygen concentration was controlled by varying the partial pressure of water during the deposition and monitored by quartz crystal microbalance, X-ray photoelectron spectroscopy. In addition to bulk oxygen content, surface oxidation and annealing at low temperature affected the cycling stability and lithium-storage capacity of the films. By simultaneously optimizing all three, films of ~2200 mAh/g capacity were synthesized. Coin cells made with the optimized films were reversibly cycled for ~120 cycles with virtually no capacity fade. After 300 cycles, 80% of the initial reversible capacity was retained.


ACS Applied Materials & Interfaces | 2013

Sn–Cu Nanocomposite Anodes for Rechargeable Sodium-Ion Batteries

Yong-Mao Lin; Paul R. Abel; Asha Gupta; John B. Goodenough; Adam Heller; C. Buddie Mullins

Sn0.9Cu0.1 nanoparticles were synthesized via a surfactant-assisted wet chemistry method, which were then investigated as an anode material for ambient temperature rechargeable sodium ion batteries. The Sn0.9Cu0.1 nanoparticle-based electrodes exhibited a stable capacity of greater than 420 mA h g(-1) at 0.2 C rate, retaining 97% of their maximum observed capacity after 100 cycles of sodium insertion/deinsertion. Their performance is considerably superior to electrodes made with either Sn nanoparticles or Sn microparticles.

Collaboration


Dive into the C. Buddie Mullins's collaboration.

Top Co-Authors

Avatar

Adam Heller

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyle C. Klavetter

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Graeme Henkelman

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Gregory M. Mullen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Sean P. Berglund

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan T. Hahn

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Oluwaniyi Mabayoje

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge