Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Casey Cunningham is active.

Publication


Featured researches published by C. Casey Cunningham.


Journal of Biological Chemistry | 1997

Actin-biding Protein-280 Binds the Stress-activated Protein Kinase (SAPK) Activator SEK-1 and Is Required for Tumor Necrosis Factor-α Activation of SAPK in Melanoma Cells

Amelia Marti; Zhijun Luo; C. Casey Cunningham; Yasutaka Ohta; John H. Hartwig; Thomas P. Stossel; John M. Kyriakis; Joseph Avruch

SEK-1, a dual specificity protein kinase that serves as one of the immediate upstream activators of the stress-activated protein kinases (SAPKs), associates specifically with the actin-binding protein, ABP-280, in vitro and in situ. SEK-1 binds to the carboxyl-terminal rod segment of ABP-280, upstream of the ABP carboxyl-terminal dimerization domain. Activation of SEK-1 in situ increases the SEK-1 activity bound to ABP-280 without changing the amount of SEK-1 polypeptide bound. The influence of ABP-280 on SAPK regulation was evaluated in human melanoma cells that lack ABP-280 expression, and in stable transformants of these cells expressing wild type ABP, or an actin-binding but dimerization-deficient mutant ABP (ABPΔCT109). ABP-280-deficient cells show an activation of SAPK in response to most stimuli that is comparable to that seen in ABP-280-replete cells; ABP-280-deficient cells, however, fail to show the brisk tumor necrosis factor-α (TNF-α) activation of SAPK seen in ABP-replete cells and have an 80% reduction in SAPK activation by lysophosphatidic acid. Expression of the dimerization-deficient mutant ABP-280 fails to correct the defective SAPK response to lysophosphatidic acid, but essentially normalizes the TNF-α activation of SAPK. Thus, a lack of ABP-280 in melanoma cells causes a defect in the regulation of SAPK that is selective for TNF-α and is attributable to the lack of ABP-280 polypeptide itself rather than to the disordered actin cytoskeleton that results therefrom. ABP-280 participates in TNF-α signal transduction to SAPKs, in part through the binding of SEK-1.


Journal of Biological Chemistry | 2001

Cell Permeant Polyphosphoinositide-binding Peptides That Block Cell Motility and Actin Assembly

C. Casey Cunningham; Rolands Vegners; Robert Bucki; Makoto Funaki; Neha Korde; John H. Hartwig; Thomas P. Stossel; Paul A. Janmey

Polyphosphoinositides (PPIs) affect the localization and activities of many cellular constituents, including actin-modulating proteins. Several classes of polypeptide sequences, including pleckstrin homology domains, FYVE domains, and short linear sequences containing predominantly hydrophobic and cationic residues account for phosphoinositide binding by most such proteins. We report that a ten-residue peptide derived from the phosphatidylinositol 4,5-bisphosphate (PIP2) binding region in segment 2 of gelsolin, when coupled to rhodamine B has potent PIP2 binding activity in vitro; crosses the cell membrane of fibroblasts, platelets, melanoma cells, and neutrophils by a process not involving endocytosis; and blocks cell motility. This peptide derivative transiently disassembles actin filament structures in GFP-actin-expressing NIH3T3 fibroblasts and prevents thrombin- or chemotactic peptide-stimulated actin assembly in platelets and neutrophils, respectively, but does not block the initial [Ca2+] increase caused by these agonists. The blockage of actin assembly and motility is transient, and cells recover motility within an hour after their immobilization by 5–20 μmpeptide. This class of reagents confirms the critical relation between inositol lipids and cytoskeletal structure and may be useful to probe the location and function of polyphosphoinositides in vivo.


Journal of Biological Chemistry | 1997

Identification of the Region in Actin-binding Protein that Binds to the Cytoplasmic Domain of Glycoprotein Ibα

Sylvie C. Meyer; Susanne Zuerbig; C. Casey Cunningham; John H. Hartwig; Thomas Bissell; Keri Gardner; Joan E. B. Fox

Actin-binding protein (ABP-280) is a component of the submembranous cytoskeleton and interacts with the glycoprotein (GP) Ibα subunit of the GP Ib-IX complex in platelets. In the present studies, we have identified the binding site for GP Ibα in ABP-280. A melanoma cell line lacking ABP-280 was stably transfected with the cDNAs coding for GP Ib-IX, then transiently transfected with cDNA coding for various carboxyl-truncates of ABP-280. Immunocapture assays and co-immunoprecipitation experiments from detergent-lysed cells showed that deletion of the carboxyl-terminal repeats 20-24 of ABP-280 had no effect on GP Ib-IX binding, but deletion of residues 2099 through 2136 within repeat 19 abolished binding. In the yeast two-hybrid system, an ABP-280 fragment comprising repeats 17-19 bound GP Ibα. Deletion from either end abolished binding. Individual or multiple repeats of ABP-280 were expressed as fusion protein in bacteria and purified; structural folding was evaluated, and binding to GP Ib-IX was assessed. Binding depended on the presence of repeats 17-19. None of the individual repeats were able to bind to GP Ib-IX. These findings demonstrate that residues 1850-2136 comprising repeats 17-19 contain the binding site for GP Ib-IX.


Biophysical Journal | 1997

The structure of divalent cation-induced aggregates of PIP2 and their alteration by gelsolin and tau.

Lisa A. Flanagan; C. Casey Cunningham; Jian Chen; Glenn D. Prestwich; Kenneth S. Kosik; Paul A. Janmey

Phosphatidylinositol bisphosphate (PIP2) serves as a precursor for diacylglycerol and inositol trisphosphate in signal transduction cascades and regulates the activities of several actin binding proteins that influence the organization of the actin cytoskeleton. Molecules of PIP2 form 6-nm diameter micelles in water, but aggregate into larger, multilamellar structures in physiological concentrations of divalent cations. Electron microscopic analysis of these aggregates reveals that they are clusters of striated filaments, suggesting that PIP2 aggregates form stacks of discoid micelles rather than multilamellar vesicles or inverted hexagonal arrays as previously inferred from indirect observations. The distance between striations within the filaments varies from 4.2 to 5.4 nm and the diameter of the filaments depends on the dehydrated ionic radius of the divalent cation, with average diameters of 19, 12, and 10 nm for filaments formed by Mg2+, Ca2+, and Ba2+, respectively. The structure of the divalent cation-induced aggregates can be altered by PIP2 binding proteins. Gelsolin and the microtubule associated protein tau both affect the formation of aggregates, indicating that tau acts as a PIP2 binding protein in a manner similar to gelsolin. In contrast, another PIP2 binding protein, profilin, does not modify the aggregates.


American Journal of Physiology-cell Physiology | 1999

Actin filament organization is required for proper cAMP-dependent activation of CFTR

Adriana G. Prat; C. Casey Cunningham; G. Robert Jackson; Steven C. Borkan; Yihan Wang; Dennis A. Ausiello; Horacio F. Cantiello

Previous studies have indicated a role of the actin cytoskeleton in the regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. However, the exact molecular nature of this regulation is still largely unknown. In this report human epithelial CFTR was expressed in human melanoma cells genetically devoid of the filamin homologue actin-cross-linking protein ABP-280 [ABP(-)]. cAMP stimulation of ABP(-) cells or cells genetically rescued with ABP-280 cDNA [ABP(+)] was without effect on whole cell Cl(-) currents. In ABP(-) cells expressing CFTR, cAMP was also without effect on Cl(-) conductance. In contrast, cAMP induced a 10-fold increase in the diphenylamine-2-carboxylate (DPC)-sensitive whole cell Cl(-) currents of ABP(+)/CFTR(+) cells. Further, in cells expressing both CFTR and a truncated form of ABP-280 unable to cross-link actin filaments, cAMP was also without effect on CFTR activation. Dialysis of ABP-280 or filamin through the patch pipette, however, resulted in a DPC-inhibitable increase in the whole cell currents of ABP(-)/CFTR(+) cells. At the single-channel level, protein kinase A plus ATP activated single Cl(-) channels only in excised patches from ABP(+)/CFTR(+) cells. Furthermore, filamin alone also induced Cl(-) channel activity in excised patches of ABP(-)/CFTR(+) cells. The present data indicate that an organized actin cytoskeleton is required for cAMP-dependent activation of CFTR.Previous studies have indicated a role of the actin cytoskeleton in the regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. However, the exact molecular nature of this regulation is still largely unknown. In this report human epithelial CFTR was expressed in human melanoma cells genetically devoid of the filamin homologue actin-cross-linking protein ABP-280 [ABP(-)]. cAMP stimulation of ABP(-) cells or cells genetically rescued with ABP-280 cDNA [ABP(+)] was without effect on whole cell Cl- currents. In ABP(-) cells expressing CFTR, cAMP was also without effect on Cl- conductance. In contrast, cAMP induced a 10-fold increase in the diphenylamine-2-carboxylate (DPC)-sensitive whole cell Cl- currents of ABP(+)/CFTR(+) cells. Further, in cells expressing both CFTR and a truncated form of ABP-280 unable to cross-link actin filaments, cAMP was also without effect on CFTR activation. Dialysis of ABP-280 or filamin through the patch pipette, however, resulted in a DPC-inhibitable increase in the whole cell currents of ABP(-)/CFTR(+) cells. At the single-channel level, protein kinase A plus ATP activated single Cl-channels only in excised patches from ABP(+)/CFTR(+) cells. Furthermore, filamin alone also induced Cl- channel activity in excised patches of ABP(-)/CFTR(+) cells. The present data indicate that an organized actin cytoskeleton is required for cAMP-dependent activation of CFTR.


Cancer and Metastasis Reviews | 1992

Actin structural proteins in cell motility

C. Casey Cunningham

The machinery for cell locomotion is based in a network of polymerized actin filaments supporting the peripheral cytoplasm. This network or ‘gel’ consists of actin filaments in a variety of configurations, including cables, loose bundles, and branching arrays; all formed by the interaction of actin-associated proteins with actin filaments. For cell locomotion to occur, this network must be reversibly disassembled or ‘solated” to allow protrusion, then re-assembled to stabilize the resulting extension. Thus, proteins to promote both ‘solation’ and ‘gelation’ of actin are important for efficient cell locomotion. Because of their distribution, control, and in vitro effects on actin filaments, two such proteins, gelsolin and actin-binding protein (ABP) should play especially important roles in cell motility. Support for this premise is found in in vivo studies of mouse kidney fibroblasts which demonstrated increased translocational locomotion after cytoplasmic gelsolin expression was increased genetically and in melanoma cells missing actin-binding protein which behave as expected for a cell unable to achieve efficient actin gelation. Since malignant transformation is known to affect the expression and distribution of several of these actin structural proteins, including gelsolin, further investigations of the role these proteins play in cell motility will be important to the determination of tumor cell motility and hence metastatic propensity.


Journal of Biological Chemistry | 1996

Renal Epithelial Protein (Apx) Is an Actin Cytoskeleton-regulated Na+ Channel

Adriana G. Prat; Eliezer J. Holtzman; Dennis Brown; C. Casey Cunningham; Ignacio L. Reisin; Thomas R. Kleyman; Margaret McLaughlin; George R. Jackson; John Lydon; Horacio F. Cantiello

Apx, the amphibian protein associated with renal amiloride-sensitive Na+ channel activity and with properties consistent with the pore-forming 150-kDa subunit of an epithelial Na+ channel complex initially purified by Benos et al. (Benos, D. J., Saccomani, G., and Sariban-Sohraby, S. (1987) J. Biol. Chem. 262, 10613-10618), has previously failed to generate amiloride-sensitive Na+ currents (Staub, O., Verrey, F., Kleyman, T. R., Benos, D. J., Rossier, B. C., and Kraehenbuhl, J.-P. (1992) J. Cell Biol. 119, 1497-1506). Renal epithelial Na+ channel activity is tonically inhibited by endogenous actin filaments (Cantiello, H. F., Stow, J., Prat, A. G., and Ausiello, D. A. (1991) Am. J. Physiol. 261, C882-C888). Thus, Apx was expressed and its function examined in human melanoma cells with a defective actin-based cytoskeleton. Apx-transfection was associated with a 60-900% increase in amiloride-sensitive (Ki = 3 μM) Na+ currents. Single channel Na+ currents had a similar functional fingerprint to the vasopressin-sensitive, and actin-regulated epithelial Na+ channel of A6 cells, including a 6-7 pS single channel conductance and a perm-selectivity of Na+:K+ of 4:1. Na+ channel activity was either spontaneous, or induced by addition of actin or protein kinase A plus ATP to the bathing solution of excised inside-out patches. Therefore, Apx may be responsible for the ionic conductance involved in the vasopressin-activated Na+ reabsorption in the amphibian kidney.


Archive | 1992

Cytoskeletal Networks and Osmotic Pressure in Relation to Cell Structure and Motility

Paul A. Janmey; C. Casey Cunningham; George Oster; Thomas P. Stossel

The motility of many cell types proceeds sporadically, by a sequence of propulsive and contractile movements. These movements appear to be controlled by proteins acting upon the actin cytoskeletal network which induce gel-sol transformations in specific regions of the cytoplasm. However, the forces that actually drive these cytoplasmic motions remain obscure; indeed there may be several force generating systems which dominate different types of motile events. For example, directed locomotion may involve the same direct mechanochemical coupling as occurs within muscles, in conjunction with other forces such as membrane bending, gel swelling and elasticity, or osmotic and hydrostatic pressures. In this chapter we will review the elastic properties of cytoskeletal protein networks. It is these networks that provide elastic resistance to cell deformation, and whose rearrangement may allow directed motion in response to externally or internally generated forces.


Science | 1992

Actin-binding protein requirement for cortical stability and efficient locomotion

C. Casey Cunningham; Jed Gorlin; David J. Kwiatkowski; John H. Hartwig; Paul A. Janmey; Hr Byers; Thomas P. Stossel


Science | 1991

Enhanced motility in NIH 3T3 fibroblasts that overexpress gelsolin

C. Casey Cunningham; Thomas P. Stossel; David J. Kwiatkowski

Collaboration


Dive into the C. Casey Cunningham's collaboration.

Top Co-Authors

Avatar

John H. Hartwig

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Paul A. Janmey

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Thomas P. Stossel

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Vegner

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge