C Coffey
Vanderbilt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C Coffey.
Medical Physics | 1999
Ravinder Nath; Howard I. Amols; C Coffey; Dennis M. Duggan; Shirish Jani; Michael C. Schell; Christopher G. Soares; James S. Whiting; Patricia E. Cole; Ian Crocker; Robert S. Schwartz
Recent preclinical and clinical studies indicate that irradiation using ionizing radiation in the dose range of 15 to 30 Gy may reduce the occurrence of restenosis in patients who have undergone an angioplasty. Several delivery systems of intravascular brachytherapy have been developed to deliver radiation doses in this range with minimal normal tissue toxicity. In late 1995 the American Association of Physicists in Medicine (AAPM) formed a task group to investigate these issues and to report the current state of the art of intravascular brachytherapy physics. The report of this task group is presented here.
Medical Physics | 2008
G Ding; Dennis M. Duggan; C Coffey
The increased utilization of x-ray imaging in image-guided radiotherapy has dramatically improved the radiation treatment and the lives of cancer patients. Daily imaging procedures, such as cone-beam computed tomography (CBCT), for patient setup may significantly increase the dose to the patients normal tissues. This study investigates the dosimetry from a kilovoltage (kV) CBCT for real patient geometries. Monte Carlo simulations were used to study the kV beams from a Varian on-board imager integrated into the Trilogy accelerator. The Monte Carlo calculated results were benchmarked against measurements and good agreement was obtained. The authors developed a novel method to calibrate Monte Carlo simulated beams with measurements using an ionization chamber in which the air-kerma calibration factors are obtained from an Accredited Dosimetry Calibration Laboratory. The authors have introduced a new Monte Carlo calibration factor, fMCcal, which is determined from the calibration procedure. The accuracy of the new method was validated by experiment. When a Monte Carlo simulated beam has been calibrated, the simulated beam can be used to accurately predict absolute dose distributions in the irradiated media. Using this method the authors calculated dose distributions to patient anatomies from a typical CBCT acquisition for different treatment sites, such as head and neck, lung, and pelvis. Their results have shown that, from a typical head and neck CBCT, doses to soft tissues, such as eye, spinal cord, and brain can be up to 8, 6, and 5 cGy, respectively. The dose to the bone, due to the photoelectric effect, can be as much as 25 cGy, about three times the dose to the soft tissue. The study provides detailed information on the additional doses to the normal tissues of a patient from a typical kV CBCT acquisition. The methodology of the Monte Carlo beam calibration developed and introduced in this study allows the user to calculate both relative and absolute absorbed doses.
Physics in Medicine and Biology | 2007
G Ding; Dennis M. Duggan; C Coffey
The purpose of this investigation is to characterize the beams produced by a kilovoltage (kV) imager integrated into a linear accelerator (Varian on-board imager integrated into the Trilogy accelerator) for acquiring high resolution volumetric cone-beam computed tomography (CBCT) images of the patient on the treatment table. The x-ray tube is capable of generating photon spectra with kVp values between 40 and 125 kV. The Monte Carlo simulations were used to study the characteristics of kV beams and the properties of imaged target scatters. The Monte Carlo results were benchmarked against measurements, and excellent agreements were obtained. We also studied the effect of including the electron impact ionization (EII), and the simulation showed that the characteristic radiation is increased significantly in the energy spectra when EII is included. Although only slight beam hardening is observed in the spectra of all photons after passing through the phantom target, there is a significant difference in the spectra and angular distributions between scattered and primary photons. The results also show that the photon fluence distributions are significantly altered by adding bow tie filters. The results indicate that a combination of large cone-beam field size and large imaged target significantly increases scatter-to-primary ratios for photons that reach the detector panel. For phantoms 10 cm, 20 cm and 30 cm thick of water placed at the isocentre, the scatter-to-primary ratios are 0.94, 3.0 and 7.6 respectively for an open 125 kVp CBCT beam. The Monte Carlo simulations show that the increase of the scatter is proportional to the increase of the imaged volume, and this also applies to scatter-to-primary ratios. This study shows both the magnitude and the characteristics of scattered x-rays. The knowledge obtained from this investigation may be useful in the future design of the image detector to improve the image quality.
Medical Physics | 1997
Christian Janicki; Dennis M. Duggan; C Coffey; D. R. Fischell; T. A. Fischell
The near field dose distribution of a realistic vascular stent impregnated with radioactive 32P is calculated employing the dose-point-kernel (DPK) method in a homogeneous and uniform medium. The cylindrical wire mesh geometry for the Palmaz-Schatz [Palmaz-Schatz is a tradename of Cordis (a Johnson & Johnson company)] stent is incorporated in the model calculation, and the dose distribution generated by the beta particles emitted from the decayed radioactive 32P is computed at distances ranging from 0.1 to 2 mm exterior to the stent surface. Dose measurements were obtained using radiochromic film dosimetry media on an actual Palmaz-Schatz half-stent impregnated with 32P using ion implantation, and compared to the DPK model predictions. The close agreement between the model calculation and the film dosimetry data confirms the validity of the model which can be adapted to a variety of different stent designs.
Medical Physics | 2007
G Ding; Dennis M. Duggan; Bo Lu; Dennis E. Hallahan; Anthony J. Cmelak; Arnold W. Malcolm; Jared Newton; M Deeley; C Coffey
The purpose of this study is to assess the real target dose coverage when radiation treatments were delivered to lung cancer patients based on treatment planning according to the RTOG-0236 Protocol. We compare calculated dosimetric results between the more accurate anisotropic analytical algorithm (AAA) and the pencil beam algorithm for stereotactic body radiation therapy treatment planning in lung cancer. Ten patients with non-small cell lung cancer were given 60 Gy in three fractions using 6 and 10 MV beams with 8-10 fields. The patients were chosen in accordance with the lung RTOG-0236 protocol. The dose calculations were performed using the pencil beam algorithm with no heterogeneity corrections (PB-NC) and then recalculated with the pencil beam with modified Batho heterogeneity corrections (PB-MB) and the AAA using an identical beam setup and monitor units. The differences in calculated dose to 95% or 99% of the PTV, between using the PB-NC and the AAA, were within 10% of prescribed dose (60 Gy). However, the minimum dose to 95% and 99% of PTV calculated using the PB-MB were consistently overestimated by up to 40% and 36% of the prescribed dose, respectively, compared to that calculated by the AAA. Using the AAA as reference, the calculated maximum doses were underestimated by up to 27% using the PB-NC and overestimated by 19% using the PB-MB. The calculations of dose to lung from PB-NC generally agree with that of AAA except in the small high-dose region where PB-NC underestimates. The calculated dose distributions near the interface using the AAA agree with those from Monte Carlo calculations as well as measured values. This study indicates that the real minimum PTV dose coverage cannot be guaranteed when the PB-NC is used to calculate the monitor unit settings in dose prescriptions.
Physics in Medicine and Biology | 2006
G Ding; Dennis M. Duggan; C Coffey
The purpose of this investigation is to study the feasibility of using an alternative method to commission stereotactic radiosurgery beams shaped by micro multi-leaf collimators by using Monte Carlo simulations to obtain beam characteristics of small photon beams, such as incident beam particle fluence and energy distributions, scatter ratios, depth-dose curves and dose profiles where measurements are impossible or difficult. Ionization chambers and diode detectors with different sensitive volumes were used in the measurements in a water phantom and the Monte Carlo codes BEAMnrc/DOSXYZnrc were used in the simulation. The Monte Carlo calculated data were benchmarked against measured data for photon beams with energies of 6 MV and 10 MV produced from a Varian Trilogy accelerator. The measured scatter ratios and cross-beam dose profiles for very small fields are shown to be not only dependent on the size of the sensitive volume of the detector used but also on the type of detectors. It is known that the response of some detectors changes at small field sizes. Excellent agreement was seen between scatter ratios measured with a small ion chamber and those calculated from Monte Carlo simulations. The values of scatter ratios, for field sizes from 6 x 6 mm2 to 98 x 98 mm2, range from 0.67 to 1.0 and from 0.59 to 1.0 for 6 and 10 MV, respectively. The Monte Carlo calculations predicted that the incident beam particle fluence is strongly affected by the X-Y-jaw openings, especially for small fields due to the finite size of the radiation source. Our measurement confirmed this prediction. This study demonstrates that Monte Carlo calculations not only provide accurate dose distributions for small fields where measurements are difficult but also provide additional beam characteristics that cannot be obtained from experimental methods. Detailed beam characteristics such as incident photon fluence distribution, energy spectra, including composition of primary and scattered photons, can be independently used in dose calculation models and to improve the accuracy of measurements with detectors with an energy-dependent response. Furthermore, when there are discrepancies between results measured with different detectors, the Monte Carlo calculated values can indicate the most correct result. The data set presented in this study can be used as a reference in commissioning stereotactic radiosurgery beams shaped by a BrainLAB m3 on a Varian 2100EX or 600C accelerator.
Radiotherapy and Oncology | 2010
G Ding; Peter Munro; Jason Pawlowski; Arnold W. Malcolm; C Coffey
BACKGROUND AND PURPOSE This study explores methods to reduce dose due to kV-CBCT imaging for patients undergoing radiation therapy. MATERIAL AND METHODS Doses resulting from kV-CBCT scans were calculated using Monte Carlo techniques and were analyzed using dose-volume histograms. Patients were modeled as were CBCT acquisitions using both 360° and 200° gantry rotations. The effects of using the half fan bow-tie and the full fan bow-tie filters were examined. RESULTS Doses for OBI 1.3 are 15 times (head), 5 times (thorax) and 2 times (Pelvis) larger than the current OBI 1.4. When using 200° scans, the doses to eyes and cord are 0.2 (or 0.65) cGy and 0.35 (or 0.2) cGy when rotating the X-ray source underneath (or above) the patient, respectively. The 360° Pelvis scan dose is 1-2 cGy. The rectum dose is 1.1 (or 2.8) cGy when rotating the source above (or below) the patient with the 200° Pelvis scan. The dose increases up to two times as the patient size decreases. CONCLUSIONS The dose can be minimized by reducing the scan length, the exposure settings, by selecting the gantry rotation angles, and by using the full fan bow-tie whenever possible.
International Journal of Radiation Oncology Biology Physics | 2010
Jason Pawlowski; Eddy S. Yang; Arnold W. Malcolm; C Coffey; G Ding
PURPOSE To determine whether image guidance can improve the dose delivered to target organs and organs at risk (OARs) for prostate cancer patients treated with intensity-modulated radiotherapy (IMRT). METHODS AND MATERIALS Eight prostate cancer patients were treated with IMRT to 76 Gy at 2 Gy per fraction. Daily target localization was performed via alignment of three intraprostatic fiducials and weekly kV-cone beam computed tomography (CBCT) scans. The prostate and OARs were manually contoured on each CBCT by a single physician. Daily patient setup shifts were obtained by comparing alignment of skin tattoos with the treatment position based on fiducials. Treatment fields were retrospectively applied to CBCT scans. The dose distributions were calculated using actual treatment plans (an 8-mm PTV margin everywhere except for 6-mm posteriorly) with and without image guidance shifts. Furthermore, the feasibility of margin reduction was evaluated by reducing planning margins to 4 mm everywhere except for 3 mm posteriorly. RESULTS For the eight treatment plans on the 56 CBCT scans, the average doses to 98% of the prostate (D98) were 102% (range, 99-104%) and 99% (range, 45-104%) with and without image guidance, respectively. Using margin reduction, the average D98s were 100% (range, 84-104%) and 92% (range, 40-104%) with and without image guidance, respectively. CONCLUSIONS Currently, margins used in IMRT plans are adequate to deliver a dose to the prostate with conventional patient positioning using skin tattoos or bony anatomy. The use of image guidance may facilitate significant reduction of planning margins. Future studies to assess the efficacy of decreasing margins and improvement of treatment-related toxicities are warranted.
Medical Physics | 1999
Dennis M. Duggan; C Coffey; John Lobdell; Michael C. Schell
Good clinical physics practice requires that dose rates of brachytherapy sources be checked by the institution using them, as recommended by American Association of Physicists in Medicine Task Group 56 and The American College of Radiology. For intravascular brachytherapy with catheter-based systems, AAPM Task Group 60 recommends that the dose rate be measured at a reference point located at a radial distance of 2 mm from the center of the catheter axis. AAPM Task Group 60 also recommends that the dose rate along the catheter axis at a radial distance of 2 mm should be uniform to within +/- 10% in the center two-thirds of the treated length, and the relative dose rate in the plane perpendicular to the catheter axis through the center of the source should be measured at distances from 0.5 mm to R90 (the distance from a point source within which 90% of the energy is deposited) at intervals of 0.5 mm. Radiochromic film dosimetry has been used to measure the dose distribution in a plane parallel to and at a radial distance of 2 mm from the axis of a novel, catheter-based, beta source for intravascular brachytherapy. The dose rate was averaged along a line parallel to the catheter axis at a radial distance of 2 mm, in the centered 24.5 mm of the treated length. This average dose rate agreed with the dose rate measured with a well ionization chamber by the replacement method using source trains calibrated with an extrapolation chamber at the National Institute of Standards and Technology. All of the dose rates in the centered 24.5 mm of a line parallel to the axis at a distance of 2 mm were within +/-10% of the average.
Medical Physics | 1999
Christian Janicki; Dennis M. Duggan; Albin L. Gonzalez; C Coffey; David A. Rahdert
A model for the description of the near-field dose deposition from a 32p impregnated stent in an arterial system consisting of soft tissue and dense plaque is presented. The model is based on the scaling property of the dose-point-kernel (DPK) function which is extended to a heterogeneous medium consisting of a series of layers of different materials. It is shown that, for each point source originating from the stent surface, the DPK function for water can be scaled consistently along the path through the different layers of material to predict the dose at a given point in the heterogeneous medium. Radiochromic film dosimetry on actual 32p stents is used to test the new model. The experimental setup consists of a water-equivalent phantom in which a stent is deployed and on which a thin layer of polytetrafluoroethylene (PTFE) is deposited to simulate the presence of plaque. Layers of radiochromic films stacked over the phantom are used to measure the dose at distances varying from approximately 0.1 mm to approximately 3 mm from the stent surface with and without PTFE. It is shown that the proposed new DPK model for a heterogeneous medium agrees very well with the experimental data and that it compares favorably to the usual homogeneous DPK model. These results indicate that the new model can be used with confidence to predict the dose in a realistic artery in the presence of plaque.