Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Cuello is active.

Publication


Featured researches published by C. Cuello.


Cell | 2017

Interspecies Chimerism with Mammalian Pluripotent Stem Cells

Jun Wu; Aida Platero-Luengo; Masahiro Sakurai; Atsushi Sugawara; M.A. Gil; Takayoshi Yamauchi; Keiichiro Suzuki; Y. S. Bogliotti; C. Cuello; Mariana Morales Valencia; Daiji Okumura; Jingping Luo; Marcela Vilarino; I. Parrilla; Delia Alba Soto; Cristina A. Martinez; Tomoaki Hishida; Sonia Sánchez-Bautista; M. Llanos Martinez-Martinez; Huili Wang; A. Nohalez; Emi Aizawa; Paloma Martínez-Redondo; Alejandro Ocampo; Pradeep Reddy; Jordi Roca; Elizabeth A. Maga; Concepcion Rodriguez Esteban; W. Travis Berggren; Estrella Nuñez Delicado

Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos.


Reproduction in Domestic Animals | 2010

Advances in swine in vitro embryo production technologies.

M.A. Gil; C. Cuello; I. Parrilla; J.M. Vazquez; J. Roca; Emilio A. Martinez

CONTENTS Recent advances in new technologies to produce cloned and genetically modified pigs involve manipulating oocytes and/or embryos in vitro. Although a great deal of progress has been made, the current IVM-IVF systems still result in major problems: a high rate of polyspermy; and a low development rate and low quality of blastocysts for in vitro compared with the in vivo-produced embryos. This study summarizes recent advancements in IVM-IVF-IVC porcine systems. Recent methods to select monospermic embryos are also discussed. Finally, achievements in vitrification and in somatic cell nuclear transfer are discussed.


BMC Genomics | 2014

The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa

C. Almiñana; Ignacio Caballero; Paul R. Heath; Saeedeh Maleki-Dizaji; I. Parrilla; C. Cuello; M.A. Gil; Jl Vazquez; J.M. Vazquez; Jordi Roca; Emilio A. Martinez; William V. Holt; Alireza Fazeli

BackgroundSex allocation of offspring in mammals is usually considered as a matter of chance, being dependent on whether an X- or a Y-chromosome-bearing spermatozoon reaches the oocyte first. Here we investigated the alternative possibility, namely that the oviducts can recognise X- and Y- spermatozoa, and may thus be able to bias the offspring sex ratio.ResultsBy introducing X- or Y-sperm populations into the two separate oviducts of single female pigs using bilateral laparoscopic insemination we found that the spermatozoa did indeed elicit sex-specific transcriptomic responses. Microarray analysis revealed that 501 were consistently altered (P-value < 0.05) in the oviduct in the presence of Y-chromosome-bearing spermatozoa compared to the presence of X-chromosome-bearing spermatozoa. From these 501 transcripts, 271 transcripts (54.1%) were down-regulated and 230 transcripts (45.9%) were up-regulated when the Y- chromosome-bearing spermatozoa was present in the oviduct. Our data showed that local immune responses specific to each sperm type were elicited within the oviduct. In addition, either type of spermatozoa elicits sex-specific signal transduction signalling by oviductal cells.ConclusionsOur data suggest that the oviduct functions as a biological sensor that screens the spermatozoon, and then responds by modifying the oviductal environment. We hypothesize that there might exist a gender biasing mechanism controlled by the female.


Reproduction in Domestic Animals | 2011

Approaches towards efficient use of boar semen in the pig industry.

Jordi Roca; I. Parrilla; Heriberto Rodriguez-Martinez; M.A. Gil; C. Cuello; J.M. Vazquez; Emilio Martínez

The current cervical artificial insemination (CAI) procedure, involving deposition of excessive sperm numbers, is uneconomical for pig industry. The most obvious alternative requires uterine deposition in combination with fixed-time AI, which would reduce the number of sperm required per pregnant sow, thus allowing the best use of valuable boars and, ultimately, the commercial integration of frozen-thawed and sexed sperm. This review depicts possible best ways to implement an efficient use of liquid-stored, frozen-thawed and sexed sperm by the pig industry.


Theriogenology | 2009

Sex-sorting sperm by flow cytometry in pigs : Issues and perspectives

J.M. Vazquez; I. Parrilla; J. Roca; M.A. Gil; C. Cuello; Jl Vazquez; Emilio A. Martinez

Several hundred thousand offspring of preselected sex of various species have been born since sperm sexing technology based on flow cytometric sorting of X- and Y-chromosome-bearing sperm and DNA was first demonstrated in 1989. The advantages derived from application of sexing technology to commercial dairy cattle production have been demonstrated worldwide. Utilizing sex-sorting technology for pig production systems offers many similar advantages. However, several factors currently limit implementation of sexing technology in pigs. Anatomical and physiological features inherent to the female pig, together with the relatively low sperm output of a flow sorter, are the main limitations to widespread use of this technology in pig production systems. This review analyzes the factors that limit the efficiency of sperm sorting technology for commercial swine production. In addition, this review discusses recent innovations in technical instrumentation and applied reproductive techniques that may help to overcome some of these limitations.


Theriogenology | 2008

New developments in low-dose insemination technology

J.M. Vazquez; J. Roca; M.A. Gil; C. Cuello; I. Parrilla; Jl Vazquez; Emilio A. Martinez

New nonsurgical procedures for inseminating swine with a low number of spermatozoa have been developed and/or evaluated over the last few years. These procedures allow the deposition of the insemination dose into the uterine body (post-cervical insemination) or directly into the uterine horn (deep intrauterine insemination). With the use of the post-cervical insemination, a threefold reduction in the number of fresh sperm has been successfully used to achieve pregnancy. Using deep intrauterine insemination (DUI), up to a 20-fold reduction in the number of fresh spermatozoa or a sixfold reduction in the number of frozen/thawed spermatozoa can be achieved, with reproductive performance very similar to that obtained after standard AI. Complementing these nonsurgical insemination techniques, a new procedure for depositing spermatozoa into the oviduct by laparoscopy has been recently described. This laparoscopic technique has proven to be applicable to diluted and sex-sorted spermatozoa. The development of new insemination procedures will help achieve more efficient application of currently available sperm technologies. Using appropriate insemination procedures, it is now feasible to achieve high fertility rates with cooled, frozen-thawed, or sex-sorted semen.


PLOS ONE | 2012

Early Developing Pig Embryos Mediate Their Own Environment in the Maternal Tract

C. Almiñana; Paul R. Heath; Stephen J. Wilkinson; J. Sanchez-Osorio; C. Cuello; I. Parrilla; M.A. Gil; Jl Vazquez; J.M. Vazquez; Jordi Roca; Emilio A. Martinez; Alireza Fazeli

The maternal tract plays a critical role in the success of early embryonic development providing an optimal environment for establishment and maintenance of pregnancy. Preparation of this environment requires an intimate dialogue between the embryo and her mother. However, many intriguing aspects remain unknown in this unique communication system. To advance our understanding of the process by which a blastocyst is accepted by the endometrium and better address the clinical challenges of infertility and pregnancy failure, it is imperative to decipher this complex molecular dialogue. The objective of the present work is to define the local response of the maternal tract towards the embryo during the earliest stages of pregnancy. We used a novel in vivo experimental model that eliminated genetic variability and individual differences, followed by Affymetrix microarray to identify the signals involved in this embryo-maternal dialogue. Using laparoscopic insemination one oviduct of a sow was inseminated with spermatozoa and the contralateral oviduct was injected with diluent. This model allowed us to obtain samples from the oviduct and the tip of the uterine horn containing either embryos or oocytes from the same sow. Microarray analysis showed that most of the transcripts differentially expressed were down-regulated in the uterine horn in response to blastocysts when compared to oocytes. Many of the transcripts altered in response to the embryo in the uterine horn were related to the immune system. We used an in silico mathematical model to demonstrate the role of the embryo as a modulator of the immune system. This model revealed that relatively modest changes induced by the presence of the embryo could modulate the maternal immune response. These findings suggested that the presence of the embryo might regulate the immune system in the maternal tract to allow the refractory uterus to tolerate the embryo and support its development.


Cryobiology | 2008

Effect of the cryoprotectant concentration on the in vitro embryo development and cell proliferation of OPS-vitrified porcine blastocysts.

C. Cuello; J. Sanchez-Osorio; C. Almiñana; M.A. Gil; M.L. Perals; X. Lucas; J. Roca; J.M. Vazquez; Emilio A. Martinez

Our objective was to study the effect of the concentration of ethylene glycol (EG) and dimethyl sulfoxide (Me2SO) during vitrification on the development of porcine blastocysts. Vitrification was performed with 0.4 M sucrose and either a Me2SO and EG mixture (15%, 16% and 17% v/v of each) or EG alone (40% v/v), using superfine open pulled straws. Fresh and vitrified blastocysts were cultured for 48 h and the survival and hatching rates were evaluated. Some vitrified and fresh embryos were processed for Hoechst 33342 staining and proliferation cell nuclear antigen (PCNA) inmunolocalization to determine the proliferation index. The survival rate was similar for fresh and vitrified blastocysts, except for blastocysts vitrified using 15% of cryoprotectants, which displayed lower (P < 0.05) survival than fresh blastocysts. Vitrified and fresh blastocysts had a similar cell proliferation index (range: 75.8+/-3.2 to 83.7+/-3). When only hatched blastocysts among groups were compared, the proliferation rate decreased (P < 0.05) after vitrification with 17% of EG-Me2SO. In conclusion, the concentration of EG-Me2SO could be decreased to 16% in the vitrification medium with no reduction of the in vitro developmental ability of the blastocysts. In addition, a 40% EG-based medium can be used for vitrification with similar results to those achieved with a medium containing 16% EG-Me2SO.


Theriogenology | 2004

Influence of sperm:oocyte ratio during in vitro fertilization of in vitro matured cumulus-intact pig oocytes on fertilization parameters and embryo development

M.A. Gil; Maria Ruiz; C. Cuello; J.M. Vazquez; Jordi Roca; Emilio A. Martinez

The present study was conducted to evaluate the influence of sperm:oocyte ratio during in vitro fertilization (IVF) of in vitro matured cumulus-intact oocytes on fertilization parameters and embryo development in pigs. In vitro matured oocytes surrounded by intact cumulus cells (COC) were inseminated with frozen-thawed spermatozoa at different sperm:oocyte ratios (2000:1, 3000:1, 4000:1, 6000:1, and 8000:1). Denuded oocytes inseminated with 2000 frozen-thawed spermatozoa:oocyte were the control group. A total of 2546 oocytes in five replicates were exposed to spermatozoa for 6 h and then cultured in embryo culture (EC) medium for 6 h (pronuclear formation) or 7 days (blastocyst formation: BF). The penetration rate increased in the COC groups with the sperm:oocyte ratio, reaching the highest rates with 8000:1 spermatozoa:oocyte (72.1 +/- 6.5%), similar to the control (73.5 +/- 3.5%). However, the monospermy was highest with the lower spermatozoa:oocyte rates (82.6-94.8%) and decreased drastically (P<0.05) in the COC group fertilized with 8000 sperm:oocyte (36%). The efficiency of fertilization (number of monospermic oocytes/total number of inseminated oocytes) showed no difference among the COC groups (20-30%) but they were significantly lower (P<0.007) than those obtained by the control group (43.7 +/- 2%). Embryo development was highest in the control group (58% for cleavage and 23% for BF) but not significantly different with the 6000 and 8000 sperm:oocyte COC groups (47 and 50% for cleavage and 19 and 17% for BF, respectively). These results indicate that the use of COC for IVF involves a drop in the efficiency of the fertilization and the necessity to increase the frozen-thawed sperm:oocyte ratio three to four times more to obtain similar embryo development to denuded oocytes.


Animal Reproduction Science | 2012

Differences in the ability of spermatozoa from individual boar ejaculates to withstand different semen-processing techniques

Inma Parrilla; David del Olmo; Laurien Sijses; Maria J. Martinez-Alborcia; C. Cuello; J.M. Vazquez; Emilio A. Martinez; Jordi Roca

The present study aimed to evaluate the ability of spermatozoa from individual boar ejaculates to withstand different semen-processing techniques. Eighteen sperm-rich ejaculate samples from six boars (three per boar) were diluted in Beltsville Thawing Solution and split into three aliquots. The aliquots were (1) further diluted to 3×10(7) sperm/mL and stored as a liquid at 17°C for 72 h, (2) frozen-thawed (FT) at 1×10(9) sperm/mL using standard 0.5-mL straw protocols, or (3) sex-sorted with subsequent liquid storage (at 17°C for 6 h) or FT (2×10(7) sperm/mL using a standard 0.25-mL straw protocol). The sperm quality was evaluated based on total sperm motility (the CASA system), viability (plasma membrane integrity assessed using flow cytometry and the LIVE/DEAD Sperm Viability Kit), lipid peroxidation (assessed via indirect measurement of the generation of malondialdehyde (MDA) using the BIOXYTECH MDA-586 Assay Kit) and DNA fragmentation (sperm chromatin dispersion assessed using the Sperm-Sus-Halomax(®) test). Data were normalized to the values assessed for the fresh (for liquid-stored and FT samples) or the sorted semen samples (for liquid stored and the FT sorted spermatozoa). All of the four sperm-processing techniques affected sperm quality (P<0.01), regardless of the semen donor, with reduced percentages of motile and viable sperm and increased MDA generation and percentages of sperm with fragmented DNA. Significant (P<0.05) inter-boar (effect of boars within each semen-processing technique) and intra-boar (effect of semen-processing techniques within each boar) differences were evident for all of the sperm quality parameters assessed, indicating differences in the ability of spermatozoa from individual boars to withstand the semen-processing techniques. These results are the first evidence that ejaculate spermatozoa from individual boars can respond in a boar-dependent manner to different semen-processing techniques.

Collaboration


Dive into the C. Cuello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.A. Gil

University of Murcia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Roca

University of Murcia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge