C.D. Barnes
Washington State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C.D. Barnes.
Progress in Brain Research | 1991
Simon J. Fung; Diego Manzoni; Julie Y.H. Chan; O. Pompeiano; C.D. Barnes
Using electrophysiological techniques, we investigated the functional properties of the coeruleospinal system for regulating the somatomotor outflow at lumbar cord levels. Many of the fast-conducting, antidromically activated coeruleospinal units were shown to exhibit the alpha 2-receptor response common to noradrenergic locus coeruleus (LC) neurons. Electrically activating the coeruleospinal system potentiated the lumbar monosynaptic reflex and depolarized hindlimb flexor and extensor motoneurons via an alpha 1-receptor mechanism. The latter synaptically induced membrane depolarization was mimicked by norepinephrine applied iontophoretically to motoneurons. That LC inhibited Renshaw cell activity and induced a positive dorsal root potential at the lumbar cord also reinforced LCs action on motor excitation. We conclude that LC augments the somatomotor output, at least in part, via an alpha 1-adrenoceptor-mediated excitation of ventral horn motoneurons. Such process is being strengthened by LCs suppression of the recurrent inhibition pathway as well as by its presynaptic facilitation of afferent impulse transmission at the spinal cord level.
Pflügers Archiv: European Journal of Physiology | 1988
Simon J. Fung; O. Pompeiano; C.D. Barnes
The locus coeruleuss (LCs) effect on recurrent inhibition of gastrocnemius-soleus (GS) and common peroneal (CP) monosynaptic reflexes (MSRs) was demonstrated to exceed the concomitant facilitation, indicating the independency of LCs disinhibition and facilitation measures in this study. In contrast, the disinhibition effect correlated closely with the recurrently inhibited MSRs. The disinhibition phenomenon was also accompanied by progressive delay and diminution in the Renshaw cell field potential. Hence, the recovery of recurrently inhibited MSRs was probably due, in part at least, to the LCs inhibition of the related Renshaw cell activity. Furthermore, the site-specific, discordant changes in the disinhibition of GS, compared with CP MSRs, as revealed by tracking studies imply that representations of these antagonistic motonuclei may occupy different LC loci. Accordingly, the nonuniform disinhibition may be due to the activation of discrete aggregates of LC neurons which are responsible predominantly in controlling the recurrent inhibitory pathway belonging to one or the other of the antagonistic motonuclei. These findings support a differential LC inhibitory control of Renshaw cell activity, releasing the related motoneurons for the Ia synaptic transmission — a disinhibitory process that is crucial for the LCs independent control of the recurrent circuit of antagonistics extensor and flexor motoneurons.
Progress in Brain Research | 1991
S.R. White; Simon J. Fung; C.D. Barnes
Intracellular recordings from cat spinal motoneurons in situ demonstrated that microiontophoretic application of NE with low-intensity ejection currents produces a slowly developing, small-amplitude depolarization of the cells, in contrast to early reports of NE-induced hyperpolarization. This depolarization was associated with an increase in excitability of the cells and a decrease in membrane conductance. These observations are consistent with the hypothesis that NE reduces potassium conductance in spinal motoneurons as has been proposed for facial motoneurons (VanderMaelen and Aghajanian, 1980) and thalamic neurons (McCormick and Prince, 1988). The time course of the facilitatory effects of NE on cat motoneuron excitability recorded intracellularly agreed very closely with the time course of NE-induced facilitation of glutamate-evoked excitability in rat spinal motoneurons recorded extracellularly. The similarity of the observations in rats and cats suggests that NE functions generally to enhance mammalian motoneuron responsiveness to excitatory input.
Neuroscience | 1995
R.-H. Liu; Simon J. Fung; V.K. Reddy; C.D. Barnes
Glutamate is considered to be a major excitatory neurotransmitter in the central nervous system. The presence of glutamate-like immunoreactive neurons in the rodent locus coeruleus has been reported previously. In this study we used both immunohistochemical and electrophysiological techniques to answer two major questions: (1) Is there any glutamate-like immunoreactivity in the catecholaminergic coeruleospinal system of the cat? (2) What is the physiological role, if any, of glutamate in descending locus coeruleus control of spinal motoneurons? Following injections of rhodamine-labeled latex microspheres or Fast Blue into the seventh lumbar segment of the spinal cord of the cat, retrogradely labeled cells were found throughout the rostrocaudal extent of the dorsolateral pontine tegmentum. They were primarily observed in the nucleus locus coeruleus and the Kolliker-Fuse nucleus. Some labeled cells were also present in the nucleus subcoeruleus and, to a lesser extent, in the parabrachial nuclei. Data from immunohistochemical studies indicate that 86% of all dorsolateral pontine tegmentum neurons that project to the spinal cord contain glutamate-like immunoreactivity, and 77% co-contain both glutamate- and tyrosine hydroxylase-like immunoreactivity. Electrical stimulation (four pulses of 500 microseconds duration at 500 Hz; intensity = 50-200 microA) of the locus coeruleus, in decerebrate cats, consistently induced lumbar motoneuron discharges recordable ipsilaterally as ventral root responses. These motoneuronal responses were reversibly antagonized following chemical inactivation of noradrenergic locus coeruleus neurons by local infusion of the alpha 2-adrenergic agonist clonidine, suggesting the locus coeruleus neurons to be the main source of evoked ventral root responses. Additionally, the evoked ventral root responses were reversibly reduced by 34.20 +/- 4.45% (mean +/- S.E.M.) upon intraspinal injections of the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, into the ventral horn of seventh lumbar spinal cord segment (three to four injections, 20 nmol in 0.2 microliter of 0.1 M Tris-buffered saline for each injection). Similar volumes of vehicle injections had no significant effect on the locus coeruleus-evoked ventral root responses. These ventral root responses were also partially blocked (62.30 +/- 11.76%) by intravenous administration of the alpha 1-adrenergic receptor antagonist prazosin (20 micrograms/kg). In the light of several anatomical reports of noradrenergic and glutamatergic terminals in close contact with spinal motoneurons, our present findings suggest that the locus coeruleus-evoked ventral root response probably involves the synaptic release of both norepinephrine and glutamate onto lumbar motoneurons.(ABSTRACT TRUNCATED AT 400 WORDS)
Neuroscience | 1990
O. Pompeiano; Diego Manzoni; C.D. Barnes; G. Stampacchia; Paola D'Ascanio
In precollicular decerebrate cats the electrical activity of 141 individual neurons located in the locus coeruleus-complex, i.e. in the dorsal (n = 41) and ventral parts (n = 67) as well as in the locus subcoeruleus (n = 33), was recorded during sinusoidal tilt about the longitudinal axis of the whole animal, leading to stimulation of labyrinth receptors. Some of these neurons showed physiological characteristics attributed to the norepinephrine-containing locus coeruleus neurons, namely, (i) a slow and regular resting discharge, and (ii) a typical biphasic response to fore- and hindpaw compression consisting of short impulse bursts followed by a silent period, which has been attributed to recurrent and/or lateral inhibition of the norepinephrine-containing neurons. Furthermore, 16 out of the 141 neurons were activated antidromically by stimulation of the spinal cord at T12 and L1, thus being considered coeruleospinal or subcoeruleospinal neurons. A large number of tested neurons (80 out of 141, i.e. 56.7%) responded to animal rotation at the standard frequency of 0.15 Hz and at the peak amplitude of 10 degrees. However, the proportion of responsive neurons was higher in the locus subcoeruleus (72.7%) and the dorsal locus coeruleus (61.0%) than in the ventral locus coeruleus (46.3%). A periodic modulation of firing rate of the units was observed during the sinusoidal stimulus. In particular, 45 out of the 80 units (i.e. 56.2%) were excited during side-up and depressed during side-down tilt (beta-responses), whereas 20 of 80 units (i.e. 25.0%) showed the opposite behavior (alpha-responses). In both instances, the response peak occurred with an average phase lead of about + 18 degrees, with respect to the extreme side-up or side-down position of the animal; however, the response gain (imp./s per deg) was, on average, more than two-fold higher in the former than in the latter group. The remaining 15 units (i.e. 18.7%) showed a prominent phase shift of this response peak with respect to animal position. Similar results were obtained from the subpopulation of locus coeruleus-complex neurons which fired at a low rate (less than 5.0 imp./s), as well as for the antidromically identified coeruleospinal neurons. The response gain of locus coeruleus-complex neurons, including the coeruleospinal neurons, did not change when the peak amplitude of tilt was increased from 5 degrees to 20 degrees at the fixed frequency of 0.15 Hz. This indicates that the system was relatively linear with respect to the amplitude of displacement.(ABSTRACT TRUNCATED AT 400 WORDS)
Brain Research Bulletin | 1994
Simon J. Fung; Julie Y.H. Chan; D. Manzoni; S.R. White; Y.-Y. Lai; H.K. Strahlendorf; H. Zhuo; R.-H. Liu; V.K. Reddy; C.D. Barnes
This article reviews evidence for a direct noradrenergic projection from the dorsolateral pontine tegmentum (DLPT) to spinal motoneurons. The existence of this direct pathway was first inferred by the observation that antidromically evoked responses occur in single cells in the locus coeruleus (LC), a region within the DLPT, following electrical stimulation of the ventral horn of the lumbar spinal cord of the cat. We subsequently confirmed that there is a direct noradrenergic pathway from the LC and adjacent regions of the DLPT to the lumbar ventral horn using anatomical studies that combined retrograde tracing with immunohistochemical identification of neurotransmitters. These anatomical studies further revealed that many of the noradrenergic neurons in the LC and adjacent regions of the DLPT of the cat that send projections to the spinal cord ventral horn also contain colocalized glutamate (Glu) or enkephalin (ENK). Recent studies from our laboratory suggest that Glu and ENK may function as cotransmitters with norepinephrine (NE) in the descending pathway from the DLPT. Electrical stimulation of the LC evokes a depolarizing response in spinal motoneurons that is only partially blocked by alpha 1 adrenergic antagonists. In addition, NE mimicks only the slowly developing and not the fast component of LC-evoked depolarization. Furthermore, the depolarization evoked by LC stimulation is accompanied by a decrease in membrane resistance, whereas that evoked by NE is accompanied by an increased resistance. That Glu may be a second neurotransmitter involved in LC excitation of motoneurons is supported by our observation that the excitatory response evoked in spinal cord ventral roots by electrical stimulation of the LC is attenuated by a non-N-methyl-D-aspartate glutamatergic antagonist. ENK may participate as a cotransmitter with NE to mediate LC effects on lumbar monosynaptic reflex (MSR) amplitude. Electrical stimulation of the LC has a biphasic effect on MSR amplitude, facilitation followed by inhibition. Adrenergic antagonists block only the facilitator effect of LC stimulation on MSR amplitude, whereas the ENK antagonist naloxone reverses the inhibition. The chemical heterogeneity of the cat DLPT system and the differential responses of motoneurons to the individual cotransmitters help to explain the diversity of postsynaptic potentials that occur following LC stimuli.
Progress in Brain Research | 1991
O. Pompeiano; Diego Manzoni; C.D. Barnes
The electrical activity of a large population of locus coeruleus (LC)-complex neurons, some of which were antidromically activated by stimulation of the spinal cord at T12-L1, was recorded in precollicular decerebrate cats during labyrinth and neck stimulation. Some of these neurons showed physiological characteristics attributed to norepinephrine (NE)-containing LC neurons, i.e., (i) a slow and regular resting discharge; (ii) a typical biphasic response to compression of the paws consisting of short impulse bursts followed by a silent period, which was attributed to recurrent and/or lateral inhibition of the corresponding neurons; and (iii) a suppression of the resting discharge during episodes of postural atonia, associated with rapid eye movements (REM), induced by systemic injection of an anticholinesterase, a finding which closely resembled that occurring in intact animals during desynchronized sleep. Among the neurons tested, 80 of 141 (i.e., 56.7%) responded to the labyrinth input elicited by sinusoidal tilt about the longitudinal axis of the whole animal at the standard parameters of 0.15 Hz, +/- 10 degrees, and 73 of 99 (i.e., 73.7%) responded to the neck input elicited by rotation of the body about the longitudinal axis at the same parameters, while maintaining the head stationary. A periodic modulation of firing rate of the units was observed during the sinusoidal stimuli. In particular, most of the LC-complex units were maximally excited during side-up tilt of the animal and side-down neck rotation, the response peak occurring with an average phase lead of about +17.9 degrees and +34.2 degrees with respect to the extreme animal and neck displacements, respectively. Similar results were also obtained from the antidromically identified coeruleospinal (CS) neurons. The degree of convergence and the modalities of interaction of vestibular and neck inputs on LC-complex neurons were also investigated. In addition to the results described above, the LC-complex neurons were also tested to changing parameters of stimulation. In particular, both static and dynamic components of single unit responses were elicited by increasing frequencies of animal tilt and neck rotation. Moreover, the relative stability of the phase angle of the responses evaluated with respect to the animal position in most of the units tested at increasing frequencies of tilt allowed the conclusion to attribute these responses to the properties of macular ultricular receptors. This conclusion is supported by the results of experiments showing that LC-complex neurons displayed steady changes in their discharge rate during static tilt of the animal.(ABSTRACT TRUNCATED AT 400 WORDS)
Neuroscience | 1989
C.D. Barnes; Diego Manzoni; O. Pompeiano; G. Stampacchia; Paola D'Ascanio
The electrical activity of 99 neurons located in the locus coeruleus-complex, namely in the dorsal (n = 26) and the ventral part of the locus coeruleus (n = 46) as well as the locus subcoeruleus (n = 27), has been recorded in precollicular decerebrate cats during sinusoidal displacement of the neck. This was achieved by rotation of the body about the longitudinal axis of the animal, while maintaining the head stationary. A proportion of these neurons showed some of the main physiological characteristics attributed to the noradrenergic locus coeruleus neurons, i.e. (i) a slow and regular resting discharge, and (ii) a typical biphasic response to fore and hindpaw compression consisting of short bursts of impulses followed by a period of quiescence, due at least in part to recurrent or lateral inhibition of the corresponding neurons. Moreover, 14 out of the 99 neurons were activated antidromically by stimulation of the spinal cord at T12 and L1, thus being considered as coeruleo- or subcoeruleospinal neurons. Among these locus coeruleus-complex neurons tested, 73 out of 99 (i.e. 73.7%) responded to neck rotation at the standard frequency of 0.15 Hz and at the peak amplitude of displacement of 10 degrees. In particular 40 of 73 units (i.e. 54.8%) were excited during side-down neck rotation and depressed during side-up rotation, while 18 of 73 units (i.e. 24.7%) showed the opposite pattern. In both instances the peak of the responses occurred with an average phase lead of +34.2 degrees for the extreme side-down or side-up neck displacement; however, the response gain (impulses/s per deg) was on the average more than two-fold higher in the former than in the latter group of units. The remaining 15 units (i.e. 20.5%) showed phase angle values which were intermediate between those of the two main populations. As to the coeruleo or subcoeruleospinal neurons, 11 of 14 units (78.6%) responded to the neck input, the majority (nine of 11 units, i.e. 81.8%) being excited during side-down neck rotation. Within the explored region, the proportion of responsive units was higher in the locus subcoeruleus (85.2%) than in the locus coeruleus, both dorsal and ventral (69.4%). Moreover, units located in the former structure showed on the average a response gain higher than that found in the latter structures. Similar results were also obtained from the population of locus subcoeruleus-complex neurons which fired at a low rate (less than or equal to 5.0 impulses/s).(ABSTRACT TRUNCATED AT 400 WORDS)
Brain Research Bulletin | 1994
Simon J. Fung; V.K. Reddy; R.-H. Liu; Zheng Wang; C.D. Barnes
This study distinguished three types of immunolabeled neurons in nucleus locus coeruleus (LC) of the rat and mouse: cells single labeled either for tyrosine hydroxylase-like immunoreactivity (TH-LI) or glutamate (Glu)-LI, and those double labeled for both antigens. Although the double labeled neurons tend to be located in the middle and ventral thirds of the rat LC nucleus, throughout its rostrocaudal extent, such feature was not apparent in the mouse. Quantitatively a majority of neurons cocontaining TH- and Glu-LI were commonly observed in the rat (62%) and mouse (77%) LC. Additional studies utilizing the combined retrograde and immunohistochemical labeling revealed that such a high incidence of coexistence of the TH- and Glu-LI was also represented by coeruleocortical neurons in the rat (69% and 75% of all ipsilateral and contralateral projection cells, respectively). A possible role of coeruleocortical neurons involvement in Glu- and norepinephrine-mediated target neuron dysfunction is discussed.
Pflügers Archiv: European Journal of Physiology | 1989
Diego Manzoni; O. Pompeiano; C.D. Barnes; G. Stampacchia; Paola D'Ascanio
Extracellular recordings were obtained in precollicular decerebrate cats from 90 neurons located in the noradrenergic area of the dorsal pontine tegmentum, namely in the dorsal (LCd,n=24) and the ventral part (LCα,n=40) of the locus coeruleus (LC) as well as in the locus subcoeruleus (SC,n=26). Among these units of the LC complex, 13 were coerulospinal (CS) neurons antidromically identified following stimulation of the spinal cord at T12-L1. Some of these neurons showed the main physiological characteristics of the norepinephrine (NE)-containing LC neurons, i.e., a slow and regular resting discharge and a typical biphasic response to fore- and hindpaw compression consisting of a short burst of excitation followed by a period of quiescence, due, in part at least, to recurrent and/or lateral inhibition. Unit firing rate was analyzed under separate stimulation of macular vestibular, neck, or combined receptors by using sinusoidal rotation about the longitudinal axis at 0.15 Hz, ±10° peak amplitude.Among the 90 LC-complex neurons, 60 (66.7%) responded with a periodic modulation of their firing rate to roll tilt of the animal and 67 (74.4%) responded to neck rotation. Convergence of macular and neck inputs was found in 52/90 (57.8%) LC-complex neurons; in these units, the gain and the sensitivity of the first harmonic of the response corresponded on the average to 0.34±0.45, SD, impulsed·s−1·deg−1 and 3.55±2.82, SD, %/deg for the neck responses and to 0.23±0.29, SD, impulses·s−1·deg−1 and 3.13±3.04, SD, %/deg for the macular responses. In addition to these convergent units, 8/90 (8.9%) and 15/90 (16.7%) LC-complex units responded to selective stimulation either of macular or of neck receptors only. These units displayed a significantly lower response gain and sensitivity to animal tilt and neck rotation with respect to those obtained from convergent units. Most of the convergent LC-complex units were maximally excited by the direction of stimulus orientation, the first harmonic of responses showing an average phase lead of about +31.0° with respect to neck position and +17.6° with respect to animal position. Two populations of convergent neurons were observed. The first group of units (43/52, i.e., 82.7%) showed reciprocal (“out of phase” responses to the two inputs; moreover, most of these units were excited during side-down neck rotation, but inhibited during side-down animal tilt. The second group of units (9/52, i.e., 17.3%) showed parallel (“in phase” responses to the two inputs and they were excited by side-down or side-up neck rotation and animal tilt. The response characteristics of LC-complex neurons to combined neck and macular inputs, elicited during head rotation, corresponded to those predicted by a vectorial summation of the individual neck and macular responses. In particular, “out of phase” units displayed small amplitudes and large phase shifts of their responses with respect to those obtained during individual neck or macular stimulation. In contrast, “in phase” units displayed large responses during head rotation. Some nonlinearities of the responses to combined stimulation of neck and macular receptors, however, were observed. The possibility that the CS neurons contributed, with the vestibulospinal (VS) neurons, to the postural adjustments of the limb musculature during labyrinth and neck reflexes was discussed.