Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. D. Boone is active.

Publication


Featured researches published by C. D. Boone.


Geophysical Research Letters | 2005

Atmospheric Chemistry Experiment (ACE): Mission overview

Peter F. Bernath; C. T. McElroy; M. C. Abrams; C. D. Boone; M. Butler; C. Camy-Peyret; Michel Carleer; Cathy Clerbaux; Pierre-François Coheur; Réginald Colin; P. DeCola; M. DeMazière; James R. Drummond; Denis G. Dufour; Wayne F. J. Evans; H. Fast; Didier Fussen; K. Gilbert; D. E. Jennings; E. J. Llewellyn; R. P. Lowe; Emmanuel Mahieu; J. C. McConnell; Martin J. McHugh; Sean D. McLeod; R. Michaud; Clive Midwinter; Ray Nassar; Florian Nichitiu; Caroline R. Nowlan

SCISAT-1, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian satellite mission for remote sensing of the Earths atmosphere. It was launched into low Earth circular orbit (altitude 650 km, inclination 74°) on 12 Aug. 2003. The primary ACE instrument is a high spectral resolution (0.02 cm-1) Fourier Transform Spectrometer (FTS) operating from 2.2 to 13.3 μm (750-4400 cm-1). The satellite also features a dual spectrophotometer known as MAESTRO with wavelength coverage of 285-1030 nm and spectral resolution of 1-2 nm. A pair of filtered CMOS detector arrays records images of the Sun at 0.525 and 1.02 μm. Working primarily in solar occultation, the satellite provides altitude profile information (typically 10-100 km) for temperature, pressure, and the volume mixing ratios for several dozen molecules of atmospheric interest, as well as atmospheric extinction profiles over the latitudes 85°N to 85°S. This paper presents a mission overview and some of the first scientific results. Copyright 2005 by the American Geophysical Union.


Applied Optics | 2005

Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer

C. D. Boone; Ray Nassar; Kaley A. Walker; Yves Joseph Rochon; Sean D. McLeod; C. P. Rinsland; Peter F. Bernath

SCISAT-1, also known as the Atmospheric Chemistry Experiment, is a satellite mission for remote sensing of the Earths atmosphere, launched on 12 August 2003. The primary instrument on the satellite is a 0.02 cm(-1) resolution Fourier-transform spectrometer operating in the mid-IR (750-4400 cm(-1)). We describe the approach developed for the retrieval of atmospheric temperature and pressure from the troposphere to the lower thermosphere as well as the strategy for the retrievals of volume-mixing ratio profiles of atmospheric species.


Science | 2010

Asian Monsoon Transport of Pollution to the Stratosphere

William J. Randel; Mijeong Park; Louisa Kent Emmons; Doug Kinnison; Peter F. Bernath; Kaley A. Walker; C. D. Boone; Hugh C. Pumphrey

Riding the Monsoon Most air transport from the troposphere to the stratosphere occurs in the tropics, but additional transport may occur in areas of strong upward convection. Randel et al. (p. 611, published online 25 March) report satellite measurements of atmospheric hydrogen cyanide over the region where the Asian summer monsoon occurs, which indicate that air is transported from the surface to deep within the stratosphere. This mechanism represents a pathway for pollutants to enter the global stratosphere, where they might affect ozone chemistry, aerosol characteristics, and radiative properties. Satellite observations of atmospheric hydrogen cyanide reveal that the Asian monsoon transports air deep into the stratosphere. Transport of air from the troposphere to the stratosphere occurs primarily in the tropics, associated with the ascending branch of the Brewer-Dobson circulation. Here, we identify the transport of air masses from the surface, through the Asian monsoon, and deep into the stratosphere, using satellite observations of hydrogen cyanide (HCN), a tropospheric pollutant produced in biomass burning. A key factor in this identification is that HCN has a strong sink from contact with the ocean; much of the air in the tropical upper troposphere is relatively depleted in HCN, and hence, broad tropical upwelling cannot be the main source for the stratosphere. The monsoon circulation provides an effective pathway for pollution from Asia, India, and Indonesia to enter the global stratosphere.


Journal of Geophysical Research | 2007

Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements

Alyn Lambert; William G. Read; Nathaniel J. Livesey; Michelle L. Santee; G. L. Manney; L. Froidevaux; Dong L. Wu; Michael J. Schwartz; Hugh C. Pumphrey; Carlos Jiménez; Gerald E. Nedoluha; R. E. Cofield; D. T. Cuddy; W. H. Daffer; Brian J. Drouin; R. Fuller; R. F. Jarnot; B. W. Knosp; Herbert M. Pickett; V. S. Perun; W. V. Snyder; P. C. Stek; R. P. Thurstans; Paul A. Wagner; J. W. Waters; Kenneth W. Jucks; G. C. Toon; R. A. Stachnik; Peter F. Bernath; C. D. Boone

[1] The quality of the version 2.2 (v2.2) middle atmosphere water vapor and nitrous oxide measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System (EOS) Aura satellite is assessed. The impacts of the various sources of systematic error are estimated by a comprehensive set of retrieval simulations. Comparisons with correlative data sets from ground-based, balloon and satellite platforms operating in the UV/visible, infrared and microwave regions of the spectrum are performed. Precision estimates are also validated, and recommendations are given on the data usage. The v2.2 H2O data have been improved over v1.5 by providing higher vertical resolution in the lower stratosphere and better precision above the stratopause. The single-profile precision is � 0.2–0.3 ppmv (4–9%), and the vertical resolution is � 3–4 km in the stratosphere. The precision and vertical resolution become worse with increasing height above the stratopause. Over the pressure range 0.1–0.01 hPa the precision degrades from 0.4 to 1.1 ppmv (6–34%), and the vertical resolution degrades to � 12–16 km. The accuracy is estimated to be 0.2–0.5 ppmv (4–11%) for the pressure range 68–0.01 hPa. The scientifically useful range of the H2O data is from 316 to 0.002 hPa, although only the 82–0.002 hPa pressure range is validated here. Substantial improvement has been achieved in the v2.2 N2O data over v1.5 by reducing a significant low bias in the stratosphere and eliminating unrealistically high biased mixing ratios in the polar regions. The single-profile precision is � 13–25 ppbv (7–38%), the vertical resolution is � 4–6 km and the accuracy is estimated to be 3–70 ppbv (9–25%) for the pressure range 100–4.6 hPa. The scientifically useful range of the N2O data is from 100 to 1 hPa.


Journal of Geophysical Research | 2008

Validation of Aura Microwave Limb Sounder stratospheric ozone measurements

L. Froidevaux; Yibo Jiang; Alyn Lambert; Nathaniel J. Livesey; William G. Read; J. W. Waters; Edward V. Browell; J. W. Hair; M. Avery; T. J. McGee; Laurence Twigg; G. K. Sumnicht; K. W. Jucks; J. J. Margitan; B. Sen; R. A. Stachnik; G. C. Toon; Peter F. Bernath; C. D. Boone; Kaley A. Walker; Mark J. Filipiak; R. S. Harwood; R. Fuller; G. L. Manney; Michael J. Schwartz; W. H. Daffer; Brian J. Drouin; R. E. Cofield; D. T. Cuddy; R. F. Jarnot

[1] The Earth Observing System (EOS) Microwave Limb Sounder (MLS) aboard the Aura satellite has provided essentially daily global measurements of ozone (O3) profiles from the upper troposphere to the upper mesosphere since August of 2004. This paper focuses on validation of the MLS stratospheric standard ozone product and its uncertainties, as obtained from the 240 GHz radiometer measurements, with a few results concerning mesospheric ozone. We compare average differences and scatter from matched MLS version 2.2 profiles and coincident ozone profiles from other satellite instruments, as well as from aircraft lidar measurements taken during Aura Validation Experiment (AVE) campaigns. Ozone comparisons are also made between MLS and balloon-borne remote and in situ sensors. We provide a detailed characterization of random and systematic uncertainties for MLS ozone. We typically find better agreement in the comparisons using MLS version 2.2 ozone than the version 1.5 data. The agreement and the MLS uncertainty estimates in the stratosphere are often of the order of 5%, with values closer to 10% (and occasionally 20%) at the lowest stratospheric altitudes, where small positive MLS biases can be found. There is very good agreement in the latitudinal distributions obtained from MLS and from coincident profiles from other satellite instruments, as well as from aircraft lidar data along the MLS track.


Pure and Applied Chemistry | 2014

Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report)

Jonathan Tennyson; Peter F. Bernath; A. Campargue; Attila G. Császár; Ludovic Daumont; Robert R. Gamache; Joseph T. Hodges; Daniel Lisak; Olga V. Naumenko; Laurence S. Rothman; H. Tran; Nikolai F. Zobov; Jeanna Buldyreva; C. D. Boone; Maria Domenica De Vizia; L. Gianfrani; J.-M. Hartmann; Robert McPheat; Damien Weidmann; Jonathan E. Murray; N.H. Ngo; Oleg L. Polyansky

Abstract The report of an IUPAC Task Group, formed in 2011 on “Intensities and line shapes in high-resolution spectra of water isotopologues from experiment and theory” (Project No. 2011-022-2-100), on line profiles of isolated high-resolution rotational-vibrational transitions perturbed by neutral gas-phase molecules is presented. The well-documented inadequacies of the Voigt profile (VP), used almost universally by databases and radiative-transfer codes, to represent pressure effects and Doppler broadening in isolated vibrational-rotational and pure rotational transitions of the water molecule have resulted in the development of a variety of alternative line-profile models. These models capture more of the physics of the influence of pressure on line shapes but, in general, at the price of greater complexity. The Task Group recommends that the partially Correlated quadratic-Speed-Dependent Hard-Collision profile (pCqSD-HCP) should be adopted as the appropriate model for high-resolution spectroscopy. For simplicity this should be called the Hartmann–Tran profile (HTP). The HTP is sophisticated enough to capture the various collisional contributions to the isolated line shape, can be computed in a straightforward and rapid manner, and reduces to simpler profiles, including the Voigt profile, under certain simplifying assumptions.


Geophysical Research Letters | 2005

Carbon monoxide distribution from the ACE-FTS solar occultation measurements

Cathy Clerbaux; Pierre-François Coheur; Daniel Hurtmans; Brice Barret; Michel Carleer; Réginald Colin; K. Semeniuk; John C. McConnell; C. D. Boone; Peter F. Bernath

This paper presents a comprehensive analysis of the CO observations acquired during the first eight months (January to September 2004) of the ACE mission. We show that the ACE high-resolution Fourier transform spectrometer (ACE-FTS), which operates in the solar occultation geometry and covers a wide spectral interval in the infrared, provides useful measurements in both the CO 1-0 and 2-0 vibrational bands. Vertically-resolved CO concentration profiles are retrieved, extending from the mid-troposphere to the thermosphere (from about 5 to 110 km). We have analyzed the latitudinal variability of the measurements, from which various physical and chemical atmospheric processes are highlighted for further study.


Applied Optics | 2007

The ACE-MAESTRO instrument on SCISAT: description, performance, and preliminary results

C. Thomas McElroy; Caroline R. Nowlan; James R. Drummond; Peter F. Bernath; David V. Barton; Denis G. Dufour; Clive Midwinter; Robert B. Hall; Akira Ogyu; Aaron Ullberg; David I. Wardle; Jay Kar; Jason Zou; Florian Nichitiu; C. D. Boone; Kaley A. Walker; Neil Rowlands

The Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (MAESTRO) instrument on the SCISAT satellite is a simple, compact spectrophotometer for the measurement of atmospheric extinction, ozone, nitrogen dioxide, and other trace gases in the stratosphere and upper troposphere as part of the Atmospheric Chemistry Experiment (ACE) mission. We provide an overview of the instrument from requirements to realization, including optical design, prelaunch and on-orbit performance, and a preliminary examination of retrievals of ozone and NO(2).


Journal of Geophysical Research | 2012

Global variations of HDO and HDO/H2O ratios in the upper troposphere and lower stratosphere derived from ACE-FTS satellite measurements

William J. Randel; Elisabeth J. Moyer; Mijeong Park; Eric J. Jensen; Peter F. Bernath; Kaley A. Walker; C. D. Boone

[1] High-quality satellite observations of water and deuterated water in the upper troposphere and lower stratosphere (UTLS) from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) are used to map global climatological behavior. Spatial and temporal variability in these data suggest that convection plays a significant role in setting water vapor isotopic composition in these regions. In many instances, enhancements in HDO/H2O (i.e., dD) are closely tied to patterns of climatological deep convection and uncorrelated with water vapor, although convection appears to have different isotopic effects in different locations. The ACE-FTS data reveal seasonal variations in the tropics and allow mapping of climatological regional structure. These data reveal strong regional isotopic enhancement associated with the North American summer monsoon but not the Asian monsoon or the western Pacific warm pool. We suggest that the isotopic effects of deep convection near the tropopause are moderated by the ambient relative humidity, which controls the amount of convective ice that evaporates. Local convective signals can in turn affect global behavior: the North America monsoon influence introduces a Northern Hemisphere–Southern Hemisphere asymmetry in water isotopic composition in the lower stratosphere that extends into the tropics and influences the apparent seasonal cycle in averaged tropical UTLS data. Seasonal variation in tropical lower stratospheric water isotopic composition extends up to � 20 km in ACE retrievals, but in contrast to previous reports, there is no clear evidence of propagation beyond the lowermost stratosphere. The reliability of these observations is supported by the broad consistency of ACE-FTS averaged tropical profiles with previous remote and in situ dD measurements.


Geophysical Research Letters | 2008

Global distributions of carbonyl sulfide in the upper troposphere and stratosphere

M. P. Barkley; Paul I. Palmer; C. D. Boone; Peter F. Bernath; Parvadha Suntharalingam

We present the first upper tropospheric and stratospheric global distributions of carbonyl sulfide (OCS) observed from space using solar occultation measurements made by the Atmospheric Chemistry Experiment (ACE) satellite Fourier transform spectrometer during 2004–2006. We observe high OCS mixing ratios (>400 pptv) within the tropical stratosphere owing to convected tropospheric air. Stratospheric mixing ratios decrease more rapidly with altitude moving away from the Equator, creating a poleward gradient. Elevated OCS concentrations observed at low southern latitudes are consistent with a significant pyrogenic source. Using coincident ACE measurements of CFC-11 and CFC-12 we determine a global OCS stratospheric lifetime of 64 ± 21 years corresponding to a stratospheric sink of 63–124 Gg OCS yr-1.

Collaboration


Dive into the C. D. Boone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. L. Manney

New Mexico Institute of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. H. Daffer

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nathaniel J. Livesey

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge