C. D. Dermer
United States Department of Defense
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. D. Dermer.
The Astrophysical Journal | 2013
C. Kouveliotou; Jonathan Granot; Judith Lea Racusin; Eric C. Bellm; G. Vianello; S. R. Oates; Christopher L. Fryer; S. E. Boggs; Finn Erland Christensen; William W. Craig; C. D. Dermer; Neil Gehrels; Charles J. Hailey; Fiona A. Harrison; Andrea Melandri; J. E. McEnery; Carole G. Mundell; D. Stern; G. Tagliaferri; William W. Zhang
GRB 130427A occurred in a relatively nearby galaxy; its prompt emission had the largest GRB fluence ever recorded. The afterglow of GRB 130427A was bright enough for the Nuclear Spectroscopic Telescope ARray (NuSTAR) to observe it in the 3-79 keV energy range long after its prompt emission (~1.5 and 5 days). This range, where afterglow observations were previously not possible, bridges an important spectral gap. Combined with Swift, Fermi, and ground-based optical data, NuSTAR observations unambiguously establish a single afterglow spectral component from optical to multi-GeV energies a day after the event, which is almost certainly synchrotron radiation. Such an origin of the late-time Fermi/Large Area Telescope >10 GeV photons requires revisions in our understanding of collisionless relativistic shock physics.
The Astrophysical Journal | 2015
C. D. Dermer; 闫大海; Dh Yan; L Zhang; J. Finke; Benoit Lott
Fermi-LAT analyses show that the gamma-ray photon spectral indices Gamma_gamma of a large sample of blazars correlate with the vFv peak synchrotron frequency v_s according to the relation Gamma_gamma = d - k log v_s. The same function, with different constants d and k, also describes the relationship between Gamma_gamma and peak Compton frequency v_C. This behavior is derived analytically using an equipartition blazar model with a log-parabola description of the electron energy distribution (EED). In the Thomson regime, k = k_EC = 3b/4 for external Compton processes and k = k_SSC = 9b/16 for synchrotron self-Compton (SSC) processes, where b is the log-parabola width parameter of the EED. The BL Lac object Mrk 501 is fit with a synchrotron/SSC model given by the log-parabola EED, and is best fit away from equipartition. Corrections are made to the spectral-index diagrams for a low-energy power-law EED and departures from equipartition, as constrained by absolute jet power. Analytic expressions are compared with numerical values derived from self-Compton and external Compton scattered gamma-ray spectra from Ly alpha broad-line region and IR target photons. The Gamma_gamma vs. v_s behavior in the model depends strongly on b, with progressively and predictably weaker dependences on gamma-ray detection range, variability time, and isotropic gamma-ray luminosity. Implications for blazar unification and blazars as ultra-high energy cosmic-ray sources are presented. Arguments by Ghisellini et al. (2014) that the jet power exceeds the accretion luminosity depend on the doubtful assumption that we are viewing at the Doppler angle.
Archive | 2011
A. A. Abdo; M. Ackermann; M. Ajello; L. Baldini; J. Ballet; G. Barbiellini; D. Bastieri; K. Bechtol; R. Bellazzini; B. Berenji; R. D. Blandford; E. D. Bloom; E. Bonamente; A. W. Borgland; A. Bouvier; J. Bregeon; A. Brez; M. Brigida; P. Bruel; R. Buehler; S. Buson; G. A. Caliandro; R. A. Cameron; A. Cannon; Patrizia A. Caraveo; S. Carrigan; J. M. Casandjian; E. Cavazzuti; C. Cecchi; O. Celik
We report on the gamma-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) gamma-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Gamma = 1.78 +/- 0.02 and average photon flux F(>0.3 GeV) = (7.23 +/- 0.16) x 10(-8) ph cm(-2) s(-1). Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor similar to 3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in gamma-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.We report on the γ -ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) γ -ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Γ = 1.78± 0.02 and average photon flux F (>0.3 GeV) = (7.23 ± 0.16) × 10−8 ph cm−2 s−1. Over this time period, the FermiLAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor ∼3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in γ -rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.
The Astrophysical Journal | 2009
Konstantin Batygin; Gregory Laughlin; Stefano Meschiari; Eugenio J. Rivera; S. S. Vogt; Paul Butler; A. A. Abdo; M. Ackermann; M. Ajello; Katsuaki Asano; L. Baldini; J. Ballet; G. Barbiellin; D. Bastieri; B. M. Baughman; K. Bechtol; R. Bellazzini; R. D. Blandford; E. D. Bloom; E. Bonamente; A. W. Borgland; J. Bregeon; A. Brez; M. Brigida; P. Bruel; T. H. Burnett; G. A. Caliandro; R. A. Cameron; P. A. Caraceo; J. M. Casandjian