Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. D. Dowell is active.

Publication


Featured researches published by C. D. Dowell.


Physical Review Letters | 2014

Detection of

Peter A. R. Ade; R. W. Aikin; D. Barkats; S. J. Benton; C. A. Bischoff; J. J. Bock; J. A. Brevik; I. Buder; E. Bullock; C. D. Dowell; L. Duband; J. Filippini; S. Fliescher; S. R. Golwala; M. Halpern; Matthew Hasselfield; S. R. Hildebrandt; G. C. Hilton; V. V. Hristov; K. D. Irwin; K. S. Karkare; J. P. Kaufman; Brian Keating; S. A. Kernasovskiy; J. M. Kovac; Chao-Lin Kuo; E. M. Leitch; M. Lueker; P. Mason; C. B. Netterfield

We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around ℓ∼80. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of ≈300  μK(CMB)√s. BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B-mode power over the base lensed-ΛCDM expectation in the range 30 < ℓ < 150, inconsistent with the null hypothesis at a significance of >5σ. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power ∼(5-10)× smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ. The observed B-mode power spectrum is well fit by a lensed-ΛCDM+tensor theoretical model with tensor-to-scalar ratio r = 0.20_(-0.05)(+0.07), with r = 0 disfavored at 7.0σ. Accounting for the contribution of foreground, dust will shift this value downward by an amount which will be better constrained with upcoming data sets.


web science | 2006

B

A. Kovács; S. C. Chapman; C. D. Dowell; A. W. Blain; R. J. Ivison; Ian Smail; T. G. Phillips

We present 350 μm observations of 15 Chapman et al. submillimeter galaxies (SMGs) with radio counterparts and optical redshifts. We detect 12 and obtain sensitive upper limits for three, providing direct, precise measurements of their far-infrared luminosities and characteristic dust temperatures. With these, we verify the linear radio-far-infrared correlation at redshifts of z ~ 1-3 and luminosities of 10^(11)-10^(13) L_☉, with a power-law index of 1.02 ± 0.12 and rms scatter of 0.12 dex. However, either the correlation constant q or the dust emissivity index β is lower than measured locally. The best-fitting q ≃2.14 is consistent with SMGs being predominantly starbust galaxies, without significant AGN contribution, at far-infrared wavelengths. Gas-to-dust mass ratios are estimated at 54^(+14)_(-11)(κ_(850μm)/0.15 m^2 kg^(-1)), depending on the absoption efficiency κ_ν, with intrinsic dispersion ≃40% around the mean value. Dust temperatures consistent with 34.6 ± 3 K (1.5/β)^(0.71), at z ~ 1.5-3.5, suggest that far-infrared photometric redshifts may be viable, and perhaps accurate to 10% ≲ dz/(1 + z), for up to 80% of the SMG population in this range, if the above temperature characterizes the full range of SMGs. However, observed temperature evolution of T_d ∝ (1 + z) is also plausible and could result from selection effects. From the observed luminosity-temperature (L-T) relation, L ∝ T^(2.82±0.29)_(obs), we derive scaling relations for dust mass versus dust temperature, and we identify expressions to interrelate the observed quantities. These suggest that measurements at a single wavelength, in the far-infrared, submillimeter, or radio wave bands, might constrain dust temperatures and far-infrared luminosities for most SMGs with redshifts at z ~ 0.5-4.


Nature | 2013

-Mode Polarization at Degree Angular Scales by BICEP2

Dominik A. Riechers; C. M. Bradford; D. L. Clements; C. D. Dowell; I. Perez-Fournon; R. J. Ivison; C. Bridge; A. Conley; Hai Fu; J. D. Vieira; J. L. Wardlow; Jae Calanog; A. Cooray; P. D. Hurley; R. Neri; J. Kamenetzky; James E. Aguirre; B. Altieri; V. Arumugam; Dominic J. Benford; M. Béthermin; J. J. Bock; D. Burgarella; A. Cabrera-Lavers; Sydney Chapman; P. Cox; James Dunlop; L. Earle; D. Farrah; P. Ferrero

Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts—that is, increased rates of star formation—in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ∼5 (refs 2–4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A ‘maximum starburst’ converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.


Astronomy and Astrophysics | 2010

SHARC-2 350 μm Observations of Distant Submillimeter-selected Galaxies

H. T. Nguyen; Bernhard Schulz; L. Levenson; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn; Matthew Joseph Griffin; M. Halpern; E. Hatziminaoglou

We report on the sensitivity of SPIRE photometers on the Herschel Space Observatory. Specifically, we measure the confusion noise from observations taken during the Science Demonstration Phase of the Herschel Multi-tiered Extragalactic Survey. Confusion noise is defined to be the spatial variation of the sky intensity in the limit of infinite integration time, and is found to be consistent among the different fields in our survey at the level of 5.8, 6.3 and 6.8 mJy/beam at 250, 350 and 500 microns, respectively. These results, together with the measured instrument noise, may be used to estimate the integration time required for confusion-limited maps, and provide a noise estimate for maps obtained by SPIRE.


Astronomy and Astrophysics | 2010

A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34

Seb Oliver; L. Wang; A. J. Smith; B. Altieri; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; D. Burgarella; N. Castro-Rodríguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn; Matthew Joseph Griffin

Emission at far-infrared wavelengths makes up a significant fraction of the total light detected from galaxies over the age of Universe. Herschel provides an opportunity for studying galaxies at the peak wavelength of their emission. Our aim is to provide a benchmark for models of galaxy population evolution and to test pre-existing models of galaxies. With the Herschel Multi-tiered Extra-galactic survey, HerMES, we have observed a number of fields of different areas and sensitivity using the SPIRE instrument on Herschel. We have determined the number counts of galaxies down to ~20 mJy. Our constraints from directly counting galaxies are consistent with, though more precise than, estimates from the BLAST fluctuation analysis. We have found a steep rise in the Euclidean normalised counts <100 mJy. We have directly resolved ~15% of the infrared extra-galactic background at the wavelength near where it peaks.


Astronomy and Astrophysics | 2010

HerMES: The SPIRE confusion limit

E. Hatziminaoglou; A. Omont; J. A. Stevens; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Simon Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn

Nuclear and starburst activity are known to often occur concomitantly. Herschel-SPIRE provides sampling of the FIR SEDs of type 1 and type 2 AGN, allowing for the separation between the hot dust (torus) and cold dust (starburst) emission. We study large samples of spectroscopically confirmed type 1 and type 2 AGN lying within the Herschel Multi-tiered Extragalactic Survey (HerMES) fields observed during the science demonstration phase, aiming to understand their FIR colour distributions and constrain their starburst contributions. We find that one third of the spectroscopically confirmed AGN in the HerMES fields have 5-sigma detections at 250um, in agreement with previous (sub)mm AGN studies. Their combined Spitzer-MIPS and Herschel-SPIRE colours - specifically S(250)/S(70) vs. S(70)/S(24) - quite clearly separate them from the non-AGN, star-forming galaxy population, as their 24-um flux is dominated by the hot torus emission. However, their SPIRE colours alone do not differ from those of non-AGN galaxies. SED fitting shows that all those AGN need a starburst component to fully account for their FIR emission. For objects at z > 2, we find a correlation between the infrared luminosity attributed to the starburst component, L(SB), and the AGN accretion luminosity, L(acc), with L(SB) propto L(acc)^0.35. Type 2 AGN detected at 250um show on average higher L(SB) than type 1 objects but their number is still too low to establish whether this trend indicates stronger star-formation activity.


Nature | 2012

HerMES : SPIRE galaxy number counts at 250, 350, and 500 μm

M. J. Page; M. Symeonidis; J. D. Vieira; B. Altieri; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. N. Dubois; James Dunlop; Eli Dwek; Simon Dye; Stephen Anthony Eales; David Elbaz; D. Farrah; M. Fox; A. Franceschini; Walter Kieran Gear

The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2–6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 1044 ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy’s properties in a brief period of cosmic time.


Astronomy and Astrophysics | 2012

HerMES: Far infrared properties of known AGN in the HerMES fields

M. Béthermin; E. Le Floc'h; O. Ilbert; A. Conley; G. Lagache; A. Amblard; V. Arumugam; H. Aussel; S. Berta; J. J. Bock; A. Boselli; V. Buat; Caitlin M. Casey; N. Castro-Rodríguez; A. Cava; D. L. Clements; A. Cooray; C. D. Dowell; Stephen Anthony Eales; D. Farrah; A. Franceschini; J. Glenn; Matthew Joseph Griffin; E. Hatziminaoglou; S. Heinis; E. Ibar; R. J. Ivison; J. S. Kartaltepe; L. Levenson; G. Magdis

Aims. The Spectral and Photometric Imaging REceiver (SPIRE) onboard the Herschel space telescope has provided confusion limited maps of deep fields at 250 μm, 350 μm, and 500 μm, as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). Unfortunately, due to confusion, only a small fraction of the cosmic infrared background (CIB) can be resolved into individually-detected sources. Our goal is to produce deep galaxy number counts and redshift distributions below the confusion limit at SPIRE wavelengths (~20 mJy), which we then use to place strong constraints on the origins of the cosmic infrared background and on models of galaxy evolution. Methods. We individually extracted the bright SPIRE sources (>20 mJy) in the COSMOS field with a method using the positions, the flux densities, and the redshifts of the 24 μm sources as a prior, and derived the number counts and redshift distributions of the bright SPIRE sources. For fainter SPIRE sources (<20 mJy), we reconstructed the number counts and the redshift distribution below the confusion limit using the deep 24 μm catalogs associated with photometric redshift and information provided by the stacking of these sources into the deep SPIRE maps of the GOODS-N and COSMOS fields. Finally, by integrating all these counts, we studied the contribution of the galaxies to the CIB as a function of their flux density and redshift. Results. Through stacking, we managed to reconstruct the source counts per redshift slice down to ~2 mJy in the three SPIRE bands, which lies about a factor 10 below the 5σ confusion limit. Our measurements place tight constraints on source population models. None of the pre-existing models are able to reproduce our results at better than 3-σ. Finally, we extrapolate our counts to zero flux density in order to derive an estimate of the total contribution of galaxies to the CIB, finding 10.1_(-2.3)^(+2.6) nW m^(-2) sr^(-1), 6.5_(-1.6)^(+1.7) nW m^(-2) sr^(-1), and 2.8_(-0.8)^(+0.9) nW m^(-2) sr^(-1) at 250 μm, 350 μm, and 500 μm, respectively. These values agree well with FIRAS absolute measurements, suggesting our number counts and their extrapolation are sufficient to explain the CIB. We find that half of the CIB is emitted at z = 1.04, 1.20, and 1.25, respectively. Finally, combining our results with other works, we estimate the energy budget contained in the CIB between 8 μm and 1000 μm: 26_(-3)^(+7) nW m^(-2) sr^(-1).


web science | 2010

The suppression of star formation by powerful active galactic nuclei.

Seb Oliver; Martin Kunz; B. Altieri; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; M. Béthermin; A. W. Blain; James J. Bock; A. Boselli; D. Brisbin; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. Dwek; S. Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox

We present the cross-identification and source photometry techniques used to process Herschel SPIRE imaging taken as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES). Cross-identifications are performed in map-space so as to minimize source-blending effects. We make use of a combination of linear inversion and model selection techniques to produce reliable cross-identification catalogues based on Spitzer MIPS 24-mu m source positions. Testing on simulations and real Herschel observations shows that this approach gives robust results for even the faintest sources (S-250 similar to 10 mJy). We apply our new technique to HerMES SPIRE observations taken as part of the science demonstration phase of Herschel. For our real SPIRE observations, we show that, for bright unconfused sources, our flux density estimates are in good agreement with those produced via more traditional point source detection methods (SUSSEXtractor) by Smith et al. When compared to the measured number density of sources in the SPIRE bands, we show that our method allows the recovery of a larger fraction of faint sources than these traditional methods. However, this completeness is heavily dependent on the relative depth of the existing 24-mu m catalogues and SPIRE imaging. Using our deepest multiwavelength data set in the GOODS-N, we estimate that the use of shallow 24-mu m catalogues in our other fields introduces an incompleteness at faint levels of between 20-40 per cent at 250 mu m.


The Astrophysical Journal | 2008

HerMES: deep number counts at 250 μm, 350 μm and 500 μm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background

D. P. Marrone; F. K. Baganoff; Mark R. Morris; James M. Moran; Andrea M. Ghez; Seth David Hornstein; C. D. Dowell; Diego Muñoz; Marshall W. Bautz; George R. Ricker; W. N. Brandt; Gordon Garmire; Jessica R. Lu; K. Matthews; Jian He Zhao; Ramprasad Rao; Geoffrey C. Bower

Energetic flares are observed in the Galactic supermassive black hole Sagittarius A* from radio to X-ray wavelengths. On a few occasions, simultaneous flares have been detected in IR and X-ray observations, but clear counterparts at longer wavelengths have not been seen. We present a flare observed over several hours on 2006 July 17 with the Chandra X-Ray Observatory, the Keck II telescope, the Caltech Submillimeter Observatory, and the Submillimeter Array. All telescopes observed strong flare events, but the submillimeter peak is found to occur nearly 100 minutes after the X-ray peak. Submillimeter polarization data show linear polarization in the excess flare emission, increasing from 9% to 17% as the flare passes through its peak, consistent with a transition from optically thick to thin synchrotron emission. The temporal and spectral behavior of the flare require that the energetic electrons responsible for the emission cool faster than expected from their radiative output. This is consistent with adiabatic cooling in an expanding emission region, with X-rays produced through self-Compton scattering, although not consistent with the simplest model of such expansion. We also present a submillimeter flare that followed a bright IR flare on 2005 July 31. Compared to 2006, this event had a larger peak IR flux and similar submillimeter flux, but it lacked measurable X-ray emission. It also showed a shorter delay between the IR and submillimeter peaks. Based on these events we propose a synchrotron and self-Compton model to relate the submillimeter lag and the variable IR/X-ray luminosity ratio.

Collaboration


Dive into the C. D. Dowell's collaboration.

Top Co-Authors

Avatar

J. J. Bock

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. W. Blain

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

A. Cooray

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Conley

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Glenn

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

V. Arumugam

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

V. Buat

Aix-Marseille University

View shared research outputs
Researchain Logo
Decentralizing Knowledge