Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. D. Pemmaraju is active.

Publication


Featured researches published by C. D. Pemmaraju.


Science | 2014

Attosecond band-gap dynamics in silicon

Martin Schultze; Krupa Ramasesha; C. D. Pemmaraju; Shunsuke A. Sato; D. Whitmore; Andrey Gandman; James S. Prell; Lauren J. Borja; David Prendergast; Kazuhiro Yabana; Daniel M. Neumark; Stephen R. Leone

Electron transfer from valence to conduction band states in semiconductors is the basis of modern electronics. Here, attosecond extreme ultraviolet (XUV) spectroscopy is used to resolve this process in silicon in real time. Electrons injected into the conduction band by few-cycle laser pulses alter the silicon XUV absorption spectrum in sharp steps synchronized with the laser electric field oscillations. The observed ~450-attosecond step rise time provides an upper limit for the carrier-induced band-gap reduction and the electron-electron scattering time in the conduction band. This electronic response is separated from the subsequent band-gap modifications due to lattice motion, which occurs on a time scale of 60 ± 10 femtoseconds, characteristic of the fastest optical phonon. Quantum dynamical simulations interpret the carrier injection step as light-field–induced electron tunneling. Excited electrons in semiconducting silicon are tracked on a time scale faster than the lattice vibrations. [Also see Perspective by Spielmann] Watching electrons dart through silicon The ultimate speed limit in electronic circuitry is set by the motion of the electrons themselves. Schultze et al. applied attosecond spectroscopy to glimpse this motion in a sample of silicon, the semiconducting building block of modern integrated circuits (see the Perspective by Spielmann). The technique distinguished the electron dynamics—which proceed faster than a quadrillionth of a second after laser excitation—from the comparatively slower lattice motion of the silicon atomic nuclei. Science, this issue p. 1348; see also p. 1293


Journal of Physical Chemistry Letters | 2014

Atomic-scale perspective of ultrafast charge transfer at a dye-semiconductor interface

Katrin R. Siefermann; C. D. Pemmaraju; Stefan Neppl; Andrey Shavorskiy; Amy A. Cordones; Josh Vura-Weis; Daniel Slaughter; Felix Sturm; Fabian Weise; Hendrik Bluhm; Matthew L. Strader; Hana Cho; Ming Fu Lin; Camila Bacellar; Champak Khurmi; Jinghua Guo; G. Coslovich; Robert A. Kaindl; Robert W. Schoenlein; A. Belkacem; Daniel M. Neumark; Stephen R. Leone; Dennis Nordlund; Hirohito Ogasawara; O. Krupin; J. J. Turner; W. F. Schlotter; Michael R. Holmes; Marc Messerschmidt; Michael P. Minitti

Understanding interfacial charge-transfer processes on the atomic level is crucial to support the rational design of energy-challenge relevant systems such as solar cells, batteries, and photocatalysts. A femtosecond time-resolved core-level photoelectron spectroscopy study is performed that probes the electronic structure of the interface between ruthenium-based N3 dye molecules and ZnO nanocrystals within the first picosecond after photoexcitation and from the unique perspective of the Ru reporter atom at the center of the dye. A transient chemical shift of the Ru 3d inner-shell photolines by (2.3 ± 0.2) eV to higher binding energies is observed 500 fs after photoexcitation of the dye. The experimental results are interpreted with the aid of ab initio calculations using constrained density functional theory. Strong indications for the formation of an interfacial charge-transfer state are presented, providing direct insight into a transient electronic configuration that may limit the efficiency of photoinduced free charge-carrier generation.


Science | 2017

Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction

Andrew R. Attar; Aditi Bhattacherjee; C. D. Pemmaraju; Kirsten Schnorr; Kristina D. Closser; David Prendergast; Stephen R. Leone

X-ray vision catches Woodward-Hoffmann The celebrated Woodward-Hoffmann (W-H) rules rationalize a variety of rapid bond rearrangements in organic molecules. The key insight involved symmetry conservation in the electronic journey from reactant to product. Attar et al. now report femtosecond x-ray absorption spectra and accompanying simulation studies that track shifts in carbon electronic states during one such reaction: the photochemical ring opening of cyclohexadiene to hexatriene (see the Perspective by Sension). The smooth evolution that occurs in the vicinity of the pericyclic minimum provides direct affirmation of the W-H framework. Moreover, the use of a convenient tabletop apparatus bodes well for future x-ray studies of ultrafast electronic dynamics. Science, this issue p. 54; see also p. 31 X-rays reveal the rapidly evolving electronic structure of carbons rearranging from cyclohexadiene to acyclic hexatriene. The ultrafast light-activated electrocyclic ring-opening reaction of 1,3-cyclohexadiene is a fundamental prototype of photochemical pericyclic reactions. Generally, these reactions are thought to proceed through an intermediate excited-state minimum (the so-called pericyclic minimum), which leads to isomerization via nonadiabatic relaxation to the ground state of the photoproduct. Here, we used femtosecond (fs) soft x-ray spectroscopy near the carbon K-edge (~284 electron volts) on a tabletop apparatus to directly reveal the valence electronic structure of this transient intermediate state. The core-to-valence spectroscopic signature of the pericyclic minimum observed in the experiment was characterized, in combination with time-dependent density functional theory calculations, to reveal overlap and mixing of the frontier valence orbital energy levels. We show that this transient valence electronic structure arises within 60 ± 20 fs after ultraviolet photoexcitation and decays with a time constant of 110 ± 60 fs.


Nature Communications | 2017

Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium

Michael Zürch; Hung Tzu Chang; Lauren J. Borja; Peter M. Kraus; Scott K. Cushing; Andrey Gandman; Christopher J. Kaplan; Myoung Hwan Oh; James S. Prell; David Prendergast; C. D. Pemmaraju; Daniel M. Neumark; Stephen R. Leone

Understanding excited carrier dynamics in semiconductors is crucial for the development of photovoltaics and efficient photonic devices. However, overlapping spectral features in optical pump-probe spectroscopy often render assignments of separate electron and hole carrier dynamics ambiguous. Here, ultrafast electron and hole dynamics in germanium nanocrystalline thin films are directly and simultaneously observed by ultrafast transient absorption spectroscopy in the extreme ultraviolet at the germanium M4,5 edge. We decompose the spectra into contributions of electronic state blocking and photo-induced band shifts at a carrier density of 8 × 1020 cm−3. Separate electron and hole relaxation times are observed as a function of hot carrier energies. A first-order electron and hole decay of ∼1 ps suggests a Shockley–Read–Hall recombination mechanism. The simultaneous observation of electrons and holes with extreme ultraviolet transient absorption spectroscopy paves the way for investigating few- to sub-femtosecond dynamics of both holes and electrons in complex semiconductor materials and across junctions.


Journal of The Optical Society of America B-optical Physics | 2016

Extreme ultraviolet transient absorption of solids from femtosecond to attosecond timescales [Invited]

Lauren J. Borja; Michael Zürch; C. D. Pemmaraju; Martin Schultze; Krupa Ramasesha; Andrey Gandman; James S. Prell; David Prendergast; Daniel M. Neumark; Stephen R. Leone

High-harmonic generation (HHG) produces ultrashort pulses of extreme ultraviolet radiation (XUV), which can be used for pump–probe transient absorption spectroscopy in metal oxides, semiconductors, and dielectrics. Femtosecond transient absorption on iron and cobalt oxides identifies ligand-to-metal charge transfer as the main spectroscopic transition, rather than metal-to-metal charge transfer or d–d transitions, upon photoexcitation in the visible. In silicon, attosecond transient absorption reveals that electrons tunnel into the conduction band from the valence band under strong-field excitation, to energies as high as 6 eV above the conduction band minimum. Extensions of these experiments to other semiconductors, such as germanium, and other transition metal oxides, such as vanadium dioxide, are discussed. Germanium is of particular interest because it should be possible to follow both electron and hole dynamics in a single measurement using transient XUV absorption.


Journal of Chemical Physics | 2016

Direct observation of ring-opening dynamics in strong-field ionized selenophene using femtosecond inner-shell absorption spectroscopy

Florian Lackner; Adam S. Chatterley; C. D. Pemmaraju; Kristina D. Closser; David Prendergast; Daniel M. Neumark; Stephen R. Leone; Oliver Gessner

Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C4H4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (∼58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field induced ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se+ ions within an overall time scale of approximately 170 fs. We propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se+ and ring-open cations within an additional τ2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. The findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural rearrangements.


Structural Dynamics | 2017

Ultrafast carrier thermalization and trapping in silicon-germanium alloy probed by extreme ultraviolet transient absorption spectroscopy

Michael Zürch; Hung-Tzu Chang; Peter M. Kraus; Scott K. Cushing; Lauren J. Borja; Andrey Gandman; Christopher J. Kaplan; Myoung Hwan Oh; James S. Prell; David Prendergast; C. D. Pemmaraju; Daniel M. Neumark; Stephen R. Leone

Semiconductor alloys containing silicon and germanium are of growing importance for compact and highly efficient photonic devices due to their favorable properties for direct integration into silicon platforms and wide tunability of optical parameters. Here, we report the simultaneous direct and energy-resolved probing of ultrafast electron and hole dynamics in a silicon-germanium alloy with the stoichiometry Si0.25Ge0.75 by extreme ultraviolet transient absorption spectroscopy. Probing the photoinduced dynamics of charge carriers at the germanium M4,5-edge (∼30 eV) allows the germanium atoms to be used as reporter atoms for carrier dynamics in the alloy. The photoexcitation of electrons across the direct and indirect band gap into conduction band (CB) valleys and their subsequent hot carrier relaxation are observed and compared to pure germanium, where the Ge direct (ΔEgap,Ge,direct=0.8 eV) and Si0.25Ge0.75 indirect gaps (ΔEgap,Si0.25Ge0.75,indirect=0.95 eV) are comparable in energy. In the alloy, comparable carrier lifetimes are observed for the X, L, and Γ valleys in the conduction band. A midgap feature associated with electrons accumulating in trap states near the CB edge following intraband thermalization is observed in the Si0.25Ge0.75 alloy. The successful implementation of the reporter atom concept for capturing the dynamics of the electronic bands by site-specific probing in solids opens a route to study carrier dynamics in more complex materials with femtosecond and sub-femtosecond temporal resolution.


Journal of the American Chemical Society | 2017

Ultrafast Intersystem Crossing in Acetylacetone via Femtosecond X-ray Transient Absorption at the Carbon K-Edge

Aditi Bhattacherjee; C. D. Pemmaraju; Kirsten Schnorr; Andrew R. Attar; Stephen R. Leone

Molecular triplet states constitute a crucial gateway in the photochemical reactions of organic molecules by serving as a reservoir for the excess electronic energy. Here, we report the remarkable sensitivity of soft X-ray transient absorption spectroscopy for following the intricate electronic structure changes accompanying the non-adiabatic transition of an excited molecule from the singlet to the triplet manifold. Core-level X-ray spectroscopy at the carbon-1s K-edge (284 eV) is applied to identify the role of the triplet state (T1, 3ππ*) in the ultraviolet-induced photochemistry of pentane-2,4-dione (acetylacetone, AcAc). The excited-state dynamics initiated at 266 nm (1ππ*, S2) is investigated with element- and site-specificity using broadband soft X-ray pulses produced by high harmonic generation, in combination with time-dependent density functional theory calculations of the X-ray spectra for the excited electronic singlet and triplet states. The evolution of the core-to-valence resonances at the carbon K-edge establishes an ultrafast population of the T1 state (3ππ*) in AcAc via intersystem crossing on a 1.5 ± 0.2 ps time scale.


Physical Review Letters | 2018

Soft X-Ray Second Harmonic Generation as an Interfacial Probe

Royce K. Lam; Sl Raj; Tod A. Pascal; C. D. Pemmaraju; Laura Foglia; Alberto Simoncig; Nicola Fabris; Paolo Miotti; Cj Hull; Anthony M. Rizzuto; Jacob W. Smith; R. Mincigrucci; C. Masciovecchio; Alessandro Gessini; E. Allaria; G. De Ninno; B. Diviacco; Eléonore Roussel; S. Spampinati; G. Penco; S. Di Mitri; M. Trovo; M.B. Danailov; Steven T. Christensen; Dimosthenis Sokaras; Tsu-Chien Weng; M. Coreno; L. Poletto; Walter S. Drisdell; David Prendergast

Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (∼284  eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.


Computer Physics Communications | 2018

Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

C. D. Pemmaraju; Fernando D. Vila; Joshua J. Kas; Shunsuke A. Sato; J. J. Rehr; Kazuhiro Yabana; David Prendergast

Abstract The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. Potential applications of the LCAO based scheme in the context of extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.

Collaboration


Dive into the C. D. Pemmaraju's collaboration.

Top Co-Authors

Avatar

David Prendergast

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel M. Neumark

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Andrey Gandman

University of California

View shared research outputs
Top Co-Authors

Avatar

James S. Prell

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Zürch

University of California

View shared research outputs
Top Co-Authors

Avatar

Tod A. Pascal

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

John Vinson

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge