C. David L. Thomas
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. David L. Thomas.
The Lancet | 2005
Pm Mayhew; C. David L. Thomas; John G. Clement; N. Loveridge; Thomas J. Beck; W. Bonfield; Cj Burgoyne; Jonathan Reeve
BACKGROUND Hip fracture risk rises 100 to 1000-fold over 60 years of ageing. Loss of resistance to bending is not a major feature of normal ageing of the femoral neck. Another cause of fragility is local buckling or elastic instability. Bones adapt to their local experience of mechanical loading. The suggestion that bipedalism allows thinning of the underloaded superolateral femoral neck cortex arises from the failure of walking to transmit much mechanical load to this region. We aimed to measure whether elastic instability increases greatly with age since it might trigger hip fracture in a sideways fall. METHODS We measured with computed tomography the distribution of bone in the mid-femoral neck of 77 proximal femurs from people who died suddenly aged 20-95 years. We then calculated the critical stress, from the geometric properties and density of the cortical zone most highly loaded in a sideways fall, as a threshold for elastic instability. FINDINGS With normal ageing, this thin cortical zone in the upper femoral neck became substantially thinner. Relative to mean values at age 60 years, female cortical thickness declined by 6.4% (SD 1.1) per decade (p<0.0001), and critical stress by 13.2% (4.3) per decade (p=0.004) in the superoposterior octant compressed most in a sideways fall. Similar, but significantly smaller, effects were evident in men (p=0.004). This thinning compromised the capacity of the femur to absorb energy independently of osteoporosis. Patients with hip fracture had further reduced stability. INTERPRETATION As women age, hip fragility increases because underloading of the superolateral cortex leads to atrophic thinning. Because walking does not sufficiently load the upper femoral neck, the fragile zones in healthy bones may need strengthening, for example with more well targeted exercise.
Journal of Anatomy | 2005
C. David L. Thomas; Sophie A. Feik; John G. Clement
This study investigated age and sex differences in patterns of porosity distribution in the midshaft of the human femur. Cross‐sections were obtained from 168 individuals from a modern Australian population. The sample comprised 73 females and 95 males, aged between 20 and 97 years. Microradiographs were made of 100‐µm sections and pore and bone areas were determined using image processing software. Initially the sample was divided by age: young (20–44 years), middle (45–64 years) and old (65+ years), but it was found that analysis on the basis of the ratio of medullary area to total subperiosteal area gave clearer results. The cortex was divided into three rings radially and into octants circumferentially and the porosity of each segment was calculated. Results showed that a pattern with raised porosity in the posterior and anterolateral regions, and with greater porosity in the inner parts of the cortex, becomes more pronounced with age. In males this pattern develops steadily; in females there are much greater differences between the middle and older groups than earlier in life. The patterns observed are consistent with progressive bone loss occurring along a neutral axis of the cortex where bending stress is lowest and the mechanical advantage of the bone is least.
Bone | 2009
Hayley M. Britz; C. David L. Thomas; John G. Clement; David M.L. Cooper
As computational modeling becomes an increasingly common tool for probing the regulation of bone remodeling, the need for experimental data to refine and validate such models also grows. For example, van Oers et al. (R.F. van Oers, R. Ruimerman, B. van Rietbergen, P.A. Hilbers, R. Huiskes, Relating osteon diameter to strain. Bone 2008;43: 476-482.) recently described a mechanism by which osteon size may be regulated (inversely) by strain. Empirical data supporting this relation, particularly in humans, are sparse. Therefore, we sought to determine if there is a link between body weight (the only measure related to loading available for a cadaveric population) and osteon geometry in human bone. We hypothesized that after controlling for age, sex and height, weight would be inversely related to femoral osteon size (area, On.Ar; diameter, On.Dm). Secondarily we sought to describe the relation between osteon circularity (On.Cr) and these parameters. Osteons (n=12,690) were mapped within microradiographs of femoral mid-diaphyseal specimens (n=88; 45 male, 43 female; 17-97 yrs). Univariate analysis of covariance was conducted (n=87; 1 outlier) with sex as a fixed factor and height, weight and log-transformed age as covariates. Weight was negatively related to On.Ar and On.Dm (p=0.006 and p=0.004, respectively). Age was significantly related to osteon and, it was also significantly related to circularity (all p<0.001). This relation was negative for On.Ar and On.Dm and positive for On.Cr (increasing circularity with age). On.Ar and On.Dm were found to be significantly different between the sexes (p=0.021 and p=0.019, respectively), with females having smaller osteons. No relation between sex and On.Cr was detected (p=0.449). Height was not significantly related to any of the geometric parameters. Partial eta-squared values revealed that age accounted for the largest proportion (On.Ar: 28%, On.Dm: 18%, On.Cr: 30%), weight accounted for the second largest (On.Ar: 9%, On.Dm: 10%) and sex accounted for the smallest proportion (On.Ar: 6%, On.Dm: 7%) of the variance in geometry. While previous studies have reported relations between osteon size and sex/age, we believe that our findings are the first to demonstrate a link with weight. We believe that this negative relation with weight is most probably mechanical in nature; however, alternative (endocrine) links between bone and adipose tissue cannot be ruled out by our design.
Journal of Bone and Mineral Research | 2009
C. David L. Thomas; Pm Mayhew; J. Power; Kenneth Eric Poole; N. Loveridge; John G. Clement; Cj Burgoyne; Jonathan Reeve
Hip fracture risk rises 100‐ to 1000‐fold over six decades of age, but only a minor part of this increase is explained by declining BMD. A potentially independent cause of fragility is cortical thinning predisposing to local crushing, in which bone tissues material disintegrates at the microscopic level when compressed beyond its capacity to maintain integrity. Elastic instability or buckling of a much thinned cortex might alternatively occur under compression. In a buckle, the cortex moves approximately at right angles to the direction of load, thereby distorting its microstructure, eventually to the point of disintegration. By resisting buckling movement, trabecular buttressing would protect the femoral neck cortex against this type of failure but not against crushing. We quantified the effect of aging on trabecular BMD in the femoral neck and assessed its contribution to cortical elastic stability, which determines resistance to buckling. Using CT, we measured ex vivo the distribution of bone in the midfemoral necks of 35 female and 33 male proximal femurs from cases of sudden death in those 20–95 yr of age. We calculated the critical stress σcr, at which the cortex was predicted to buckle locally, from the geometric properties and density of the cortical zone most highly loaded in a sideways fall. Using long‐established engineering principles, we estimated the amount by which stability or buckling resistance was increased by the trabecular bone supporting the most stressed cortical sector in each femoral neck. We repeated these measurements and calculations in an age‐ and sex‐matched series of femoral necks donated by women who had suffered intracapsular hip fracture and controls, using histological measurements of cortical thickness to improve accuracy. With normal aging, trabecular BMD declined asymmetrically, fastest in the supero‐lateral one‐half (in antero‐posterior projection) of the trabecular compartment. When viewed axially with respect to the femoral neck, the most rapid loss of trabecular bone occurred in the posterior part of this region (supero‐posterior [S‐P]), amounting to a 42% reduction in women (34% in men) over five decades of adult age. Because local cortical bone thickness declined comparably, age had no significant effect on the relative contributions of cortical and trabecular bone to elastic stability, and trabecular bone was calculated to contribute 40% (in men) and 43% (in women) to the S‐P cortex of its overall elastic stability. Hip fracture cases had reduced elastic stability compared with age‐matched controls, with a median reduction of 49% or 37%, depending on whether thickness was measured histologically or by CT (pQCT; p < 0.002 for both). This effect was because of reduced cortical thickness and density. Trabecular BMD was similar in hip fracture cases and controls. The capacity of the femur to resist fracture in a sideways fall becomes compromised with normal aging because cortical thickness and trabecular BMD in the most compressed part of the femoral neck both decline substantially. This decline is relatively more rapid than that of femoral neck areal BMD. If elastic instability rather than cortical crushing initiates the fracture event, interventions that increase trabecular bone in the proximal femur have great potential to reduce fracture risk because the gradient defining the increase in elastic stability with increasing trabecular BMD is steep, and most hip fracture cases have sufficient trabecular bone for anabolic therapies to build on.
Bone | 2013
Yasmin Carter; C. David L. Thomas; John G. Clement; Andrew G. Peele; Kevin. Hannah; David M.L. Cooper
In recent years there has been growing interest in the spatial properties of osteocytes (including density and morphology) and how these potentially relate to adaptation, disease and aging. This interest has, in part, arisen from the availability of increasingly high-resolution 3D imaging modalities such as synchrotron radiation (SR) micro-CT. As resolution increases, field of view generally decreases. Thus, while increasingly detailed spatial information is obtained, it is unclear how representative this information is of the skeleton or even the isolated bone. The purpose of this research was to describe the variation in osteocyte lacunar density, morphology and orientation within the femur from a healthy young male human. Multiple anterior, posterior, medial and lateral blocks (2 mm × 2 mm) were prepared from the proximal femoral shaft and SR micro-CT imaged at the Advanced Photon Source. Average lacunar densities (± standard deviation) from the anterior, posterior, medial and lateral regions were 27,169 ± 1935, 26,3643 ± 1262, 37,521 ± 6416 and 33,972 ± 2513 lacunae per mm(3) of bone tissue, respectively. These values were significantly different between the medial and both the anterior and posterior regions (p<0.05). The density of the combined anterior and posterior regions was also significantly lower (p=0.001) than the density of the combined medial and lateral regions. Although no difference was found in predominant orientation, shape differences were found; with the combined anterior and posterior regions having more elongated (p=0.004) and flattened (p=0.045) lacunae, than those of the medial and lateral regions. This study reveals variation in osteocyte lacunar density and morphology within the cross-section of a single bone and that this variation can be considerable (up to 30% difference in density between regions). The underlying functional significance of the observed variation in lacunar density likely relates to localized variations in loading conditions as the pattern corresponds well with mechanical axes. Lower density and more elongate shapes being associated with the antero-posterior oriented neutral axis. Our findings demonstrate that the functional and pathological interpretations that are increasingly being drawn from high resolution imaging of osteocyte lacunae need to be better situated within the broader context of normal variation, including that which occurs even within a single skeletal element.
Journal of Anatomy | 2006
C. David L. Thomas; Sophie A. Feik; John G. Clement
This study investigated the relative contributions of pore size and pore density (number of pores per mm2) to porosity in the midshaft of the human femur. Cross‐sections were obtained from 168 individuals from a modern Australian population (mostly Anglo‐Celtic). The study group comprised 73 females and 95 males, aged from 20 to 97 years. Microradiographs were made of 100‐µm sections and porosity, pore areas and pore densities determined using image processing software. The cortex was divided into three rings radially and into octants circumferentially, and the porosity, pore area and pore density of each segment were calculated. Results show that 81% of the variance in porosity can be explained by changes in mean pore area with only a further 12–16% explained by changes in pore density. These effects were found to be constant across all areas of the cortex and in both sexes. These results are significant in their consistency and ordered gradation and indicate a well‐regulated and systematic process of bone removal with ageing. The results show a regular progression from less porous to more porous bone; this is a uniform process that occurs in all individuals, and factors such as sex and rate of ageing determine where on this continuum any individual is at a particular time.
Journal of Structural Biology | 2013
Yasmin Carter; C. David L. Thomas; John G. Clement; David M.L. Cooper
Osteocytes are believed to be the primary agents of mechanosensing in bone. Due to this important role in the structure-function relationship of bone, osteocytes and the spaces they occupy (lacunae) are of increasing interest. Changes in lacunae with age are of particular interest in women since they are more susceptible to bone loss and fragility associated with senescent diseases including osteoporosis. This studys purpose was to test whether differences exist in lacunar density (lacunae/mm(3) of bone), orientation and morphology in the cortex of adult women spanning the human lifespan. Anterior blocks from the femoral shaft from 30 women aged 20-86years were imaged by synchrotron-radiation micro-CT. No significant relation between lacunar density and age was detected. A significant reduction in lacunar volume with age (p<0.001) was observed, alongside changes in lacunar morphology. When divided into two groups (<50 and >50years) the younger groups lacunae were ∼30% larger and were flatter (p<0.001) and less equant (spherical) (p<0.001). To our knowledge the observation that lacunar volume and morphology change over the human lifespan is novel, potentially resulting from preferential surface infilling within the extracellular space. The functional impact of this infilling is unclear but such a change in scale likely impacts the mechanosensing function of the osteocyte network. Limitations in resolution prevented us from assessing if this infilling is associated with disruption of the canaliculi. This hypothesis warrants further investigation as, if confirmed, it would represent a profound negative impact on the osteocyte network and may provide new insights into age-related bone loss.
Forensic Science International | 2003
Natalie L. Fraser; Mineo Yoshino; Kazuhiko Imaizumi; Sherie A Blackwell; C. David L. Thomas; John G. Clement
The method developed by Yoshino et al. in [Forensic Sci. Int. 109 (2000) 225 and Jpn. J. Sci. Tech. Iden. 5 (2000) 9] and already being applied in Japan utilizes a three-dimensional (3D) physiognomic rangefinder combined with a computer-assisted superimposition system. Facial outlines can be compared between two-dimensional (2D) surveillance images and data extracted from 3D images obtained from the rangefinder. Also, the loci of potentially concordant features can be compared and differences measured. The method is largely objective and gives statistics for false positive/false negative findings. This recently developed method by Yoshino et al. is currently being introduced to the Japanese courts. To enable courts outside Japan to assess the admissibility of this new method, studies of non-Japanese faces have been undertaken and shown to produce similar low error rates. The present authors, therefore, consider the Yoshino method to be applicable in a non-Japanese context. As part of this study a comparison of morphological features between two ethnic groups has been undertaken using 3D measurements for the first time and will serve as the foundation for an anthropological database in the future.
Forensic Science International | 2002
Mineo Yoshino; Kasumi Noguchi; Masaru Atsuchi; Satoshi Kubota; Kazuhiko Imaizumi; C. David L. Thomas; John G. Clement
The reliability of a morphometrical matching method for identifying disguised faces was examined experimentally using a computer-assisted facial image identification system. The 2D right oblique facial images of three target persons disguised with sunglasses, cap and gauze mask were each compared with each of the 3D facial images of 100 subjects, yielding 900 face-to-face superimpositions. The average perpendicular distance between the facial outlines and the average point-to-point distance of the corresponding landmarks in the 2D image of the disguised face and the 3D facial image, were calculated. As a matching criterion, the sum of the values of the average perpendicular difference of the facial outlines and the average point-to-point difference between the corresponding landmarks was used (abbreviation: average difference). The range of the average difference was 2.3-2.8mm for the same person (a match) and 4.0-14.6mm for different (non-matching) people, respectively. The ranges for matching and non-matching faces did not overlap. Even the 3D facial images of the non-matching person showing the closest value of average difference to the average difference for the matching person could be excluded easily. It was concluded that the morphometrical matching method can reliably identify disguised faces and the results produced by this method could be easily understandable by a court of law.
Journal of Anatomy | 2016
Isabel S. Maggiano; Corey Maggiano; John G. Clement; C. David L. Thomas; Yasmin Carter; David M.L. Cooper
This study uses synchrotron radiation‐based micro‐computed tomography (CT) scans to reconstruct three‐dimensional networks of Haversian systems in human cortical bone in order to observe and analyse interconnectivity of Haversian systems and the development of total Haversian networks across different ages. A better knowledge of how Haversian systems interact with each other is essential to improve understanding of remodeling mechanisms and bone maintenance; however, previous methodological approaches (e.g. serial sections) did not reveal enough detail to follow the specific morphology of Haversian branching, for example. Accordingly, the aim of the present study was to identify the morphological diversity of branching patterns and transverse connections, and to understand how they change with age. Two types of branching morphologies were identified: lateral branching, resulting in small osteon branches bifurcating off of larger Haversian canals; and dichotomous branching, the formation of two new osteonal branches from one. The reconstructions in this study also suggest that Haversian systems frequently target previously existing systems as a path for their course, resulting in a cross‐sectional morphology frequently referred to as ‘type II osteons’. Transverse connections were diverse in their course from linear to oblique to curvy. Quantitative assessment of age‐related trends indicates that while in younger human individuals transverse connections were most common, in older individuals more evidence of connections resulting from Haversian systems growing inside previously existing systems was found. Despite these changes in morphological characteristics, a relatively constant degree of overall interconnectivity is maintained throughout life. Altogether, the present study reveals important details about Haversian systems and their relation to each other that can be used towards a better understanding of cortical bone remodeling as well as a more accurate interpretation of morphological variants of osteons in cross‐sectional microscopy. Permitting visibility of reversal lines, synchrotron radiation‐based micro‐CT is a valuable tool for the reconstruction of Haversian systems, and future analyses have the potential to further improve understanding of various important aspects of bone growth, maintenance and health.