Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. David Stout is active.

Publication


Featured researches published by C. David Stout.


Journal of Medicinal Chemistry | 2008

A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound, is a potent inhibitor of a multidrug-resistant HIV-1 protease variant

Michael J. Giffin; Holly Heaslet; Ashraf Brik; Ying-Chuan Lin; Gabrielle Cauvi; Chi-Huey Wong; Duncan E. McRee; John H. Elder; C. David Stout; Bruce E. Torbett

Treatment with HIV-1 protease inhibitors, a component of highly active antiretroviral therapy (HAART), often results in viral resistance. Structural and biochemical characterization of a 6X protease mutant arising from in vitro selection with compound 1, a C 2-symmetric diol protease inhibitor, has been previously described. We now show that compound 2, a copper(I)-catalyzed 1,2,3-triazole derived compound previously shown to be potently effective against wild-type protease (IC 50 = 6.0 nM), has low nM activity (IC 50 = 15.7 nM) against the multidrug-resistant 6X protease mutant. Compound 2 displays similar efficacy against wild-type and 6X HIV-1 in viral replication assays. While structural studies of compound 1 bound to wild type and mutant proteases revealed a progressive change in binding mode in the mutants, the 1.3 A resolution 6X protease-compound 2 crystal structure reveals nearly identical interactions for 2 as in the wild-type protease complex with very little change in compound 2 or protease conformation.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Crystal structures of substrate-bound and substrate-free cytochrome P450 46A1, the principal cholesterol hydroxylase in the brain

Natalia Mast; Mark A. White; Ingemar Björkhem; Eric F. Johnson; C. David Stout; Irina A. Pikuleva

By converting cholesterol to 24S-hydroxycholesterol, cytochrome P450 46A1 (CYP46A1) initiates the major pathway for cholesterol removal from the brain. Two crystal structures of CYP46A1 were determined. First is the 1.9-Å structure of CYP46A1 complexed with a high-affinity substrate cholesterol 3-sulfate (CH-3S). The second structure is that of the substrate-free CYP46A1 at 2.4-Å resolution. CH-3S is bound in the productive orientation and occupies the entire length of the banana-shaped hydrophobic active-site cavity. A unique helix B′–C loop insertion (residues 116–120) contributes to positioning cholesterol for oxygenation catalyzed by CYP46A1. A comparison with the substrate-free structure reveals substantial substrate-induced conformational changes in CYP46A1 and suggests that structurally distinct compounds could bind in the enzyme active site. In vitro assays were performed to characterize the effect of different therapeutic agents on cholesterol hydroxylase activity of purified full-length recombinant CYP46A1, and several strong inhibitors and modest coactivators of CYP46A1 were identified. Structural and biochemical data provide evidence that CYP46A1 activity could be altered by exposure to some therapeutic drugs and potentially other xenobiotics.


Journal of Biological Chemistry | 2013

Structural Diversity of Eukaryotic Membrane Cytochrome P450s

Eric F. Johnson; C. David Stout

X-ray crystal structures are available for 29 eukaryotic microsomal, chloroplast, or mitochondrial cytochrome P450s, including two non-monooxygenase P450s. These structures provide a basis for understanding structure-function relations that underlie their distinct catalytic activities. Moreover, structural plasticity has been characterized for individual P450s that aids in understanding substrate binding in P450s that mediate drug clearance.


BioEssays | 2000

Abalone lysin: the dissolving and evolving sperm protein.

Nicole Kresge; Victor D. Vacquier; C. David Stout

Abalone sperm lysin is a non‐enzymatic protein that creates a hole for sperm passage in the envelope surrounding the egg. Lysin exhibits species‐specificity in making the hole and it evolves rapidly by positive selection. Our studies have focused on combining structural, biochemical, and evolutionary data to understand the mechanism of action and evolution of this remarkable protein. Currently, more is known about lysin than about any other protein involved in animal fertilization. We present an hypothesis to explain lysins rapid evolution and the evolution of species‐specific fertilization in this order of mollusks. We also propose a two‐step model for lysins action in which a dimer of lysin binds species‐specifically to its glycoprotein receptor, and then monomerizes and binds the receptor in a non‐species‐specific manner. This experimental system yields data relevant to the general problem of molecular recognition between cell surfaces, and is also important to our thinking about how new species arise in the sea. BioEssays 23:95–103, 2001.


PLOS Biology | 2005

A Conserved Mechanism for Sulfonucleotide Reduction

Kate S. Carroll; Hong Gao; Huiyi Chen; C. David Stout; Julie A. Leary; Carolyn R. Bertozzi

Sulfonucleotide reductases are a diverse family of enzymes that catalyze the first committed step of reductive sulfur assimilation. In this reaction, activated sulfate in the context of adenosine-5′-phosphosulfate (APS) or 3′-phosphoadenosine 5′-phosphosulfate (PAPS) is converted to sulfite with reducing equivalents from thioredoxin. The sulfite generated in this reaction is utilized in bacteria and plants for the eventual production of essential biomolecules such as cysteine and coenzyme A. Humans do not possess a homologous metabolic pathway, and thus, these enzymes represent attractive targets for therapeutic intervention. Here we studied the mechanism of sulfonucleotide reduction by APS reductase from the human pathogen Mycobacterium tuberculosis, using a combination of mass spectrometry and biochemical approaches. The results support the hypothesis of a two-step mechanism in which the sulfonucleotide first undergoes rapid nucleophilic attack to form an enzyme-thiosulfonate (E-Cys-S-SO3 −) intermediate. Sulfite is then released in a thioredoxin-dependent manner. Other sulfonucleotide reductases from structurally divergent subclasses appear to use the same mechanism, suggesting that this family of enzymes has evolved from a common ancestor.


Journal of Biological Chemistry | 2010

Plasticity of Cytochrome P450 2B4 as Investigated by Hydrogen-Deuterium Exchange Mass Spectrometry and X-ray Crystallography

P. Ross Wilderman; Manish B. Shah; Tong Liu; Sheng Li; Simon Hsu; Arthur G. Roberts; David R. Goodlett; Qinghai Zhang; Virgil L. Woods; C. David Stout; James R. Halpert

Crystal structures of the xenobiotic metabolizing cytochrome P450 2B4 have demonstrated markedly different conformations in the presence of imidazole inhibitors or in the absence of ligand. However, knowledge of the plasticity of the enzyme in solution has remained scant. Thus, hydrogen-deuterium exchange mass spectrometry (DXMS) was utilized to probe the conformations of ligand-free P450 2B4 and the complex with 4-(4-chlorophenyl)imidazole (4-CPI) or 1-biphenyl-4-methyl-1H-imidazole (1-PBI). The results of DXMS indicate that the binding of 4-CPI slowed the hydrogen-deuterium exchange rate over the B′- and C-helices and portions of the F-G-helix cassette compared with P450 2B4 in the absence of ligands. In contrast, there was little difference between the ligand-free and 1-PBI-bound exchange sets. In addition, DXMS suggests that the ligand-free P450 2B4 is predominantly open in solution. Interestingly, a new high resolution structure of ligand-free P450 2B4 was obtained in a closed conformation very similar to the 4-CPI complex. Molecular dynamics simulations performed with the closed ligand-free structure as the starting point were used to probe the energetically accessible conformations of P450 2B4. The simulations were found to equilibrate to a conformation resembling the 1-PBI-bound P450 2B4 crystal structure. The results indicate that conformational changes observed in available crystal structures of the promiscuous xenobiotic metabolizing cytochrome P450 2B4 are consistent with its solution structural behavior.


Molecular Pharmacology | 2011

Structures of Cytochrome P450 2B6 Bound to 4-Benzylpyridine and 4-(4-Nitrobenzyl)pyridine: Insight into Inhibitor Binding and Rearrangement of Active Site Side Chains.

Manish B. Shah; Jaime Pascual; Qinghai Zhang; C. David Stout; James R. Halpert

The biochemical, biophysical, and structural analysis of the cytochrome P450 2B subfamily of enzymes has provided a wealth of information regarding conformational plasticity and substrate recognition. The recent X-ray crystal structure of the drug-metabolizing P450 2B6 in complex with 4-(4-chlorophenyl)imidazole (4-CPI) yielded the first atomic view of this human enzyme. However, knowledge of the structural basis of P450 2B6 specificity and inhibition has remained limited. In this study, structures of P450 2B6 were determined in complex with the potent inhibitors 4-benzylpyridine (4-BP) and 4-(4-nitrobenzyl)pyridine (4-NBP). Comparison of the present structures with the previous P450 2B6-4-CPI complex showed that reorientation of side chains of the active site residue Phe206 on the F-helix and Phe297 on the I-helix was necessary to accommodate the inhibitors. However, P450 2B6 does not require any major side chain rearrangement to bind 4-NBP compared with 4-BP, and the enzyme provides no hydrogen-bonding partners for the polar nitro group of 4-NBP within the hydrophobic active site. In addition, on the basis of these new structures, substitution of residue 172 with histidine as observed in the single nucleotide polymorphism Q172H and in P450 2B4 may contribute to a hydrogen bonding network connecting the E- and I-helices, thereby stabilizing active site residues on the I-helix. These results provide insight into the role of active site side chains upon inhibitor binding and indicate that the recognition of the benzylpyridines in the closed conformation structure of P450 2B6 is based solely on hydrophobicity, size, and shape.


Biochemistry | 2009

Crystal structures of cytochrome P450 2B4 in complex with the inhibitor 1-biphenyl-4-methyl-1H-imidazole: ligand-induced structural response through alpha-helical repositioning.

Ling Sun; Keiko Maekawa; James R. Halpert; C. David Stout

Two different ligand occupancy structures of cytochrome P450 2B4 (CYP2B4) in complex with 1-biphenyl-4-methyl-1H-imidazole (1-PBI) have been determined by X-ray crystallography. 1-PBI belongs to a series of tight binding, imidazole-based CYP2B4 inhibitors. 1-PBI binding to CYP2B4 yields a type II spectrum with a K(s) value of 0.23 microM and inhibits enzyme activity with an IC(50) value of 0.035 microM. Previous CYP2B4 structures have shown a large degree of structural movement in response to ligand size. With two phenyl rings, 1-PBI is larger than 1-(4-chlorophenyl)imidazole (1-CPI) and 4-(4-chlorophenyl)imidazole (4-CPI) but smaller than bifonazole, which is branched and contains three phenyl rings. The CYP2B4-1-PBI complex is a structural intermediate to the closed CPI and the open bifonazole structures. The B/C-loop reorganizes itself to include two short partial helices while closing one side of the active site. The F-G-helix cassette pivots over the I-helix in direct response to the size of the ligand in the active site. A cluster of Phe residues at the fulcrum of this pivot point allows for dramatic repositioning of the cassette with only a relatively small amount of secondary structure rearrangement. Comparisons of ligand-bound CYP2B4 structures reveal trends in plastic region mobility that could allow for predictions of their position in future structures based on ligand shape and size.


Journal of Molecular Biology | 2003

Inherent protein structural flexibility at the RNA-binding interface of L30e

Jeffrey A. Chao; G. S. Prasad; Susan A. White; C. David Stout; James R. Williamson

The Saccharomyces cerevisiae ribosomal protein L30 autoregulates its own expression by binding to a purine-rich internal loop in its pre-mRNA and mRNA. NMR studies of L30 and its RNA complex showed that both the internal loop of the RNA as well as a region of the protein become substantially more ordered upon binding. A crystal structure of a maltose binding protein (MBP)-L30 fusion protein with two copies in the asymmetric unit has been determined. The flexible RNA-binding region in the L30 copies has two distinct conformations, one resembles the RNA bound form solved by NMR and the other is unique. Structure prediction algorithms also had difficulty accurately predicting this region, which is consistent with conformational flexibility seen in the NMR and X-ray crystallography studies. Inherent conformational flexibility may be a hallmark of regions involved in intermolecular interactions.


Methods in Enzymology | 2002

Purification and crystallization of N-terminally truncated forms of microsomal cytochrome P450 2C5

Michael R. Wester; C. David Stout; Eric E. Johnson

Engineering more soluble forms of P450 2C5 has contributed to the crystallization of the enzyme. When detergents are used in both crystallization and purification of the protein, the ability to control the content and identity of the detergent is dependent on the protein exhibiting a sufficient degree of solubility to permit its concentration in the absence of detergents. The production of concentrated solutions of the protein containing little or no detergent provides a means for screening crystallization conditions and the selection of detergents that facilitate crystallization. These detergents can then be used not only to improve the purification of the protein, but also to solublize substrates for the cocrystallization of enzyme-substrate complexes.

Collaboration


Dive into the C. David Stout's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric F. Johnson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Manish B. Shah

University of California

View shared research outputs
Top Co-Authors

Avatar

Qinghai Zhang

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

James A. Fee

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Istvan Szundi

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark A. White

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Mutsuo Yamaguchi

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge