Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C de Nooijer is active.

Publication


Featured researches published by C de Nooijer.


Journal of Micromechanics and Microengineering | 2010

Vacuum-packaged piezoelectric vibration energy harvesters: Damping contributions and autonomy for a wireless sensor system

R. Elfrink; M Renaud; T M Kamel; C de Nooijer; M. Jambunathan; M. Goedbloed; Dennis Hohlfeld; S. Matova; Valer Pop; L. Caballero; R. van Schaijk

This paper describes the characterization of thin-film MEMS vibration energy harvesters based on aluminum nitride as piezoelectric material. A record output power of 85 μW is measured. The parasitic-damping and the energy-harvesting performances of unpackaged and packaged devices are investigated. Vacuum and atmospheric pressure levels are considered for the packaged devices. When dealing with packaged devices, it is found that vacuum packaging is essential for maximizing the output power. Therefore, a wafer-scale vacuum package process is developed. The energy harvesters are used to power a small prototype (1 cm\3 volume) of a wireless autonomous sensor system. The average power consumption of the whole system is less than 10 μW, and it is continuously provided by the vibration energy harvester.


Journal of Micromechanics and Microengineering | 2010

Modeling and characterization of MEMS-based piezoelectric harvesting devices

T M Kamel; R. Elfrink; M Renaud; Dennis Hohlfeld; M. Goedbloed; C de Nooijer; M. Jambunathan; R. van Schaijk

Vibrational piezoelectric harvesting devices (PHD) provide an autonomous power source for various types of sensors, actuators and MEMS devices. There have been several examples of vibrational energy harvesters published in the literature over the years. However, for many applications the generated power is not yet sufficient. In this paper, a physical model for predicting the generated electric power from piezoelectric harvesting devices is introduced. The model is based on estimating the total charge generated on a piezoelectric material when it is subjected to mechanical strain as a result of bending at the fundamental resonance frequency. Based on Euler–Bernoulli beam theory, the strain can be determined in terms of the beam deflection at purely mechanical excitation. The proposed model extends the current state of the art by consideration of the strain distribution due to the presence of an extended mass volume at the end of the beam. The constitutive equations of piezoelectricity in the sensing mode correlate the strain and the induced charge in the piezoelectric element. Using the device design parameters and the beam deflection as inputs, the power output can be calculated. The results of the model were experimentally verified for MEMS-based PHDs. The model was found to give an accurate prediction of the electrical parameters under various damping conditions. After model validation, a subsequent device optimization has been made to improve the power generation.


international electron devices meeting | 2011

Shock induced energy harvesting with a MEMS harvester for automotive applications

R. Elfrink; S. Matova; C de Nooijer; M. Jambunathan; M. Goedbloed; J. van de Molengraft; Valer Pop; Ruud Vullers; M Renaud; R. van Schaijk

In this work we report shock induced measurement and simulations on AlN based piezoelectric vibration energy harvesters. We compare the result with sinusoidal input vibrations, where we obtain a record power of 489 µW. The vacuum packaged harvesters have high quality factors and high sensitivity. We validate the potential of piezoelectric vibration harvesters for car tire applications by measurements and simulations.


Journal of Micromechanics and Microengineering | 2012

Optimum power and efficiency of piezoelectric vibration energy harvesters with sinusoidal and random vibrations

M Renaud; R. Elfrink; M. Jambunathan; C de Nooijer; Ziyang Wang; M. Rovers; Ruud Vullers; R. van Schaijk

Assuming a sinusoidal vibration as input, an inertial piezoelectric harvester designed for maximum efficiency of the electromechanical energy conversion does not always lead to maximum power generation. In this case, what can be gained by optimizing the efficiency of the device? Detailing an answer to this question is the backbone of this paper. It is shown that, while the maximum efficiency operating condition does not always lead to maximum power generation, it corresponds always to maximum power per square unit deflection of the piezoelectric harvester. This understanding allows better optimization of the generated power when the deflection of the device is limited by hard stops. This is illustrated by experimental measurements on vacuum-packaged MEMS harvesters based on AlN as piezoelectric material. The results obtained for a sinusoidal vibration are extended to random vibrations. In this case, we demonstrate that the optimum generated power is directly proportional to the efficiency of the harvester, thus answering the initial question. For both types of studied vibrations, simple closed-form formulas describing the generated power and efficiency in optimum operating conditions are elaborated. These formulas are based on parameters that are easily measured or modeled. Therefore, they are useful performance metrics for existing piezoelectric harvesters.


international electron devices meeting | 2009

First autonomous wireless sensor node powered by a vacuum-packaged piezoelectric MEMS energy harvester

R. Elfrink; Valer Pop; Dennis Hohlfeld; T M Kamel; S. Matova; C de Nooijer; M. Jambunathan; M. Goedbloed; L. Caballero; M Renaud; Julien Penders; R. van Schaijk

This paper describes the experimental characterization of piezoelectric harvesters with different dimensions. We present a record level of generated power of 85 µW obtained from an unpacked device. We have developed a wafer-scale vacuum package which shows a 100–200 fold increase in power output compared with packaged devices under atmospheric pressure. A wireless sensor node was fully powered by a piezoelectric harvester. The average power consumption was less than 10 µW while it was operating at 15 seconds duty cycle.


Journal of Physics: Conference Series | 2013

Design improvements for an electret-based MEMS vibrational electrostatic energy harvester

Geert Altena; M Renaud; R. Elfrink; M. Goedbloed; C de Nooijer; R. van Schaijk

This paper presents several improvements to the design of an electret-based MEMS vibrational electrostatic energy harvester that have led to a two orders of magnitude increase in power compared to a previously presented device. The device in this paper has a footprint of approximately 1 cm2 and generated 175 μW. The following two improvements to the design are discussed: the electrical connection principle of the harvester and the electrode geometrical configuration. The measured performance of the device is compared with simulations. When exited by sinusoidal vibration, a device employing the two design improvements but with a higher resonance frequency and higher electret potential generated 495 μW AC power, which is the highest reported value for electret-based MEMS vibrational electrostatic energy harvesters with a similar footprint. This makes this device a promising candidate for the targeted application of wireless tire pressure monitoring systems (TPMS).


international conference on micro electro mechanical systems | 2012

A piezoelectric vibration harvester based on clamped-guided beams

Ziyang Wang; S. Matova; R. Elfrink; M. Jambunathan; C de Nooijer; R. van Schaijk; Ruud Vullers

The paper addresses the design, modeling, fabrication and experimental results of a piezoelectric energy harvester based on clamped-guided beams. The design is featured by shorter mass displacement and higher reliability than cantilever beams. Two separate sets of capacitors allow exploiting both tensile and compressive stress at the same time. The maximum output power reaches about 20 μW at an input acceleration of 1.2 g. A tuning range of 3 Hz is demonstrated by varying the voltage across the capacitors. Nonlinear behavior observed at larger mass displacement is also discussed.


international conference on micro electro mechanical systems | 2014

Improved mechanical reliability of MEMS piezoelectric vibration energy harvesters for automotive applications

M Renaud; Ziyang Wang; M. Jambunathan; S. Matova; R. Elfrink; M. Rovers; M. Goedbloed; C de Nooijer; Ruud Vullers; R. van Schaijk

This paper addresses the issue of the mechanical reliability of MEMS piezoelectric vibration harvesters aimed at powering tire pressure monitoring systems. These harvesters generate sufficient power for the targeted application. However, for bringing them to the automotive market, their mechanical reliability has to be optimized, particularly in terms of shock resilience. Experimentally verified methods for improving the mechanical reliability of such devices are showcased in this article. These methods concern both the design of the harvesters (introduction of stoppers in the package) and their manufacturing process (release method of the MEMS structure).


Smart Materials and Structures | 2015

Modeling and characterization of electret based vibration energy harvesters in slot-effect configuration

M Renaud; Geert Altena; R. Elfrink; M. Goedbloed; C de Nooijer; R. van Schaijk

The purpose of this article is to elaborate a model and the optimization guidelines for electret based harvesters with a specific electret/electrodes configuration, namely the slot-effect configuration. Slot-effect configured harvesters have been investigated experimentally by several research groups. A model describing their dynamic behavior has also been recently proposed in the literature. However, the simplifications used in the existing model can lead to inaccuracies and a refined analysis is elaborated in the present article. The model is compared with experimental measurements on MEMS fabricated devices with a corrugated electret. The electrodes dimensioning in the MEMS device are chosen so that the harvester behaves in a quasi-linear manner over its full range of displacement. This quasi-linearity simplifies greatly the device optimization. Indeed, the behavior of the developed electrostatic harvester is shown to be very comparable to that of piezoelectric harvesters, which are very well understood and documented. The influence of several design parameters on output power performance is investigated. As long as pull-in and breakdown voltage effects can be avoided, the electret surface potential should be maximized and the air gap minimized. We also investigate theoretically the influence of three types of electret on the generated power: planar, corrugated with partial charge coverage, and corrugated with full charge coverage. With the dimensions corresponding to our MEMS devices, the output power characteristics for the three types of electret are similar. However, it is shown that this is not always true. In some conditions, corrugated electrets with full charge coverage are detrimental for the generated power.


Journal of Micromechanics and Microengineering | 2015

Shock reliability analysis and improvement of MEMS electret-based vibration energy harvesters

M Renaud; Takayuki Fujita; M. Goedbloed; C de Nooijer; R. van Schaijk

Vibration energy harvesters can serve as a replacement solution to batteries for powering tire pressure monitoring systems (TPMS). Autonomous wireless TPMS powered by microelectromechanical system (MEMS) electret-based vibration energy harvester have been demonstrated. The mechanical reliability of the MEMS harvester still has to be assessed in order to bring the harvester to the requirements of the consumer market. It should survive the mechanical shocks occurring in the tire environment. A testing procedure to quantify the shock resilience of harvesters is described in this article. Our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, the first important aspect is to understand the failure mechanism. Failure is found to occur in the form of fracture of the devices springs. It results from impacts between the anchors of the springs when the harvester undergoes a shock. The shock resilience of the harvesters can be improved by redirecting these impacts to nonvital parts of the device. With this philosophy in mind, we design three types of shock absorbing structures and test their effect on the shock resilience of our MEMS harvesters. The solution leading to the best results consists of rigid silicon stoppers covered by a layer of Parylene. The shock resilience of the harvesters is brought above 2500 g. Results in the same range are also obtained with flexible silicon bumpers, which are simpler to manufacture.

Collaboration


Dive into the C de Nooijer's collaboration.

Researchain Logo
Decentralizing Knowledge