Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Duke is active.

Publication


Featured researches published by C. Duke.


Astroparticle Physics | 1999

VERITAS: The Very Energetic Radiation Imaging Telescope Array System

T. C. Weekes; H. M. Badran; S. D. Biller; I Bond; S Bradbury; J. H. Buckley; D. A. Carter-Lewis; M. Catanese; Stephen Criswell; W. Cui; P. Dowkontt; C. Duke; D. J. Fegan; J. P. Finley; L. Fortson; J. A. Gaidos; G. H. Gillanders; J Grindlay; T. A. Hall; K. Harris; A. M. Hillas; Philip Kaaret; M. Kertzman; D. Kieda; F. Krennrich; M. J. Lang; S. LeBohec; R. W. Lessard; J. Lloyd-Evans; J. Knapp

Abstract A next generation atmospheric Cherenkov observatory is described which uses the Whipple Observatory gamma-ray telescope as a prototype. An array of seven imaging telescopes will be deployed such that they will permit the maximum versatility and will give the highest sensitivity in the 50 GeV-50 TeV band (with maximum sensitivity from 100 GeV to 10 TeV). In this band critical measurements of natures most powerful accelerators will be made.The Very Energetic Radiation Imaging Telescope Array System (VERITAS) represents an important step forward in the study of extreme astrophysical processes in the universe. It combines the power of the atmospheric Cherenkov imaging technique using a large optical reflector with the power of stereoscopic observatories using arrays of separated telescopes looking at the same shower. The seven identical telescopes in VERITAS, each of aperture 10 m, will be deployed in a filled hexagonal pattern of side 80 m; each telescope will have a camera consisting of 499 pixels with a field of view of 3.5 deg VERITAS will substantially increase the catalog of very high energy (E>100GeV) gamma-ray sources and greatly improve measurements of established sources.


The Astrophysical Journal | 2005

A MULTIWAVELENGTH VIEW OF THE TeV BLAZAR MARKARIAN 421: CORRELATED VARIABILITY, FLARING, AND SPECTRAL EVOLUTION

M. Błazejowski; G. Blaylock; I. H. Bond; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; O. Celik; P. Cogan; W. Cui; M. K. Daniel; C. Duke; Abe D. Falcone; D. J. Fegan; S. J. Fegan; J. P. Finley; L. Fortson; S. Gammell; K. Gibbs; G. G. Gillanders; J. Grube; K. Gutierrez; J. Hall; D. Hanna; J. Holder; D. Horan; B. Humensky; G. E. Kenny; M. Kertzman; D. Kieda; J. Kildea

We report results from an intensive multiwavelength monitoring campaign on the TeV blazar Mrk 421 over the period of 2003-2004. The source was observed simultaneously at TeV energies with the Whipple 10 m telescope and at X-ray energies with the Rossi X-Ray Timing Explorer (RXTE) during each clear night within the Whipple observing windows. Supporting observations were also frequently carried out at optical and radio wavelengths to provide simultaneous or contemporaneous coverages. The large amount of simultaneous data has allowed us to examine the variability of Mrk 421 in detail, including cross-band correlation and broadband spectral variability, over a wide range of flux. The variabilities are generally correlated between the X-ray and gamma-ray bands, although the correlation appears to be fairly loose. The light curves show the presence of flares with varying amplitudes on a wide range of timescales at both X-ray and TeV energies. Of particular interest is the presence of TeV flares that have no coincident counterparts at longer wavelengths, because the phenomenon seems difficult to understand in the context of the proposed emission models for TeV blazars. We have also found that the TeV flux reached its peak days before the X-ray flux did during a giant flare (or outburst) in 2004 (with the peak flux reaching ~135 mcrab in X-rays, as seen by the RXTE ASM, and ~3 crab in gamma rays). Such a difference in the development of the flare presents a further challenge to both the leptonic and hadronic emission models. Mrk 421 varied much less at optical and radio wavelengths. Surprisingly, the normalized variability amplitude in the optical seems to be comparable to that in the radio, perhaps suggesting the presence of different populations of emitting electrons in the jet. The spectral energy distribution of Mrk 421 is seen to vary with flux, with the two characteristic peaks moving toward higher energies at higher fluxes. We have failed to fit the measured spectral energy distributions (SEDs) with a one-zone synchrotron self-Compton model; introducing additional zones greatly improves the fits. We have derived constraints on the physical properties of the X-ray/gamma-ray flaring regions from the observed variability (and SED) of the source. The implications of the results are discussed.


Science | 2011

Detection of Pulsed Gamma Rays Above 100 GeV from the Crab Pulsar

E. Aliu; T. Arlen; T. Aune; M. Beilicke; W. Benbow; A. Bouvier; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; J. L. Christiansen; L. Ciupik; E. Collins-Hughes; M. P. Connolly; W. Cui; R. Dickherber; C. Duke; M. Errando; A. Falcone; J. P. Finley; G. Finnegan; L. Fortson; A. Furniss; N. Galante; D. Gall; K. Gibbs; G. H. Gillanders; S. Godambe

This detection constrains the mechanism and emission region of gamma-ray radiation in the pulsar’s magnetosphere. We report the detection of pulsed gamma rays from the Crab pulsar at energies above 100 giga–electron volts (GeV) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) array of atmospheric Cherenkov telescopes. The detection cannot be explained on the basis of current pulsar models. The photon spectrum of pulsed emission between 100 mega–electron volts and 400 GeV is described by a broken power law that is statistically preferred over a power law with an exponential cutoff. It is unlikely that the observation can be explained by invoking curvature radiation as the origin of the observed gamma rays above 100 GeV. Our findings require that these gamma rays be produced more than 10 stellar radii from the neutron star.


Astroparticle Physics | 2006

The first VERITAS telescope

J. Holder; R.W. Atkins; H. M. Badran; G. Blaylock; S. M. Bradbury; J. H. Buckley; K. L. Byrum; D. A. Carter-Lewis; O. Celik; Y. C. Chow; P. Cogan; W. Cui; M. K. Daniel; I. de la Calle Perez; C. Dowdall; P. Dowkontt; C. Duke; A. Falcone; S. J. Fegan; J. P. Finley; P. Fortin; L. Fortson; K. Gibbs; G. H. Gillanders; O.J. Glidewell; J. Grube; K. Gutierrez; G. Gyuk; J. Hall; D. Hanna

Abstract The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV γ-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.


The Astrophysical Journal | 2008

VERITAS Observations of the γ-Ray Binary LS I +61 303

V. A. Acciari; M. Beilicke; G. Blaylock; S. M. Bradbury; J. H. Buckley; V. Bugaev; Y. Butt; K. L. Byrum; O. Celik; A. Cesarini; L. Ciupik; Y. C. Chow; P. Cogan; P. Colin; W. Cui; M. K. Daniel; C. Duke; T. Ergin; A. Falcone; S. J. Fegan; J. P. Finley; P. Fortin; L. Fortson; D. Gall; K. Gibbs; G. H. Gillanders; J. Grube; R. Guenette; D. Hanna; E. Hays

LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy γ-rays. The system was observed over several orbital cycles (between 2006 September and 2007 February) with the VERITAS array of imaging air Cerenkov telescopes. A signal of γ-rays with energies above 300 GeV is found with a statistical significance of 8.4 standard deviations. The detected flux is measured to be strongly variable; the maximum flux is found during most orbital cycles at apastron. The energy spectrum for the period of maximum emission can be characterized by a power law with a photon index of -->Γ = 2.40 ± 0.16stat± 0.2sys and a flux above 300 GeV corresponding to 15%-20% of the flux from the Crab Nebula.


The Astrophysical Journal | 2009

Observation of Extended Very High Energy Emission from the Supernova Remnant Ic 443 with Veritas

V. A. Acciari; E. Aliu; T. Arlen; T. Aune; M. Bautista; M. Beilicke; W. Benbow; S. M. Bradbury; J. H. Buckley; V. Bugaev; Yousaf M. Butt; K. L. Byrum; A. Cannon; Ö. Çelik; A. Cesarini; Y. C. Chow; L. Ciupik; P. Cogan; P. Colin; W. Cui; M. K. Daniel; R. Dickherber; C. Duke; Vikram V. Dwarkadas; T. Ergin; S. J. Fegan; J. P. Finley; G. Finnegan; P. Fortin; L. Fortson

We present evidence that the very-high-energy (VHE, E > 100 GeV) gamma-ray emission coincident with the supernova remnant IC 443 is extended. IC 443 contains one of the best-studied sites of supernova remnant/molecular cloud interaction and the pulsar wind nebula CXOU J061705.3+222127, both of which are important targets for VHE observations. VERITAS observed IC 443 for 37.9 hours during 2007 and detected emission above 300 GeV with an excess of 247 events, resulting in a significance of 8.3 standard deviations (sigma) before trials and 7.5 sigma after trials in a point-source search. The emission is centered at 06 16 51 +22 30 11 (J2000) +- 0.03_stat +- 0.08_sys degrees, with an intrinsic extension of 0.16 +- 0.03_stat +- 0.04_sys degrees. The VHE spectrum is well fit by a power law (dN/dE = N_0 * (E/TeV)^-Gamma) with a photon index of 2.99 +- 0.38_stat +- 0.3_sys and an integral flux above 300 GeV of (4.63 +- 0.90_stat +- 0.93_sys) * 10^-12 cm^-2 s^-1. These results are discussed in the context of existing models for gamma-ray production in IC 443.


The Astrophysical Journal | 2008

Observation of Gamma-Ray Emission from the Galaxy M87 above 250 GeV with VERITAS

V. A. Acciari; M. Beilicke; G. Blaylock; S. M. Bradbury; J. H. Buckley; V. Bugaev; Yousaf M. Butt; O. Celik; A. Cesarini; L. Ciupik; P. Cogan; P. Colin; W. Cui; M. K. Daniel; C. Duke; T. Ergin; A. Falcone; S. J. Fegan; J. P. Finley; G. Finnegan; P. Fortin; L. Fortson; K. Gibbs; G. H. Gillanders; J. Grube; R. Guenette; G. Gyuk; D. Hanna; E. Hays; J. Holder

The multiwavelength observation of the nearby radio galaxy M87 provides a unique opportunity to study in detail processes occurring in Active Galactic Nuclei from radio waves to TeV -rays. Here we report the detection of -ray emission above 250GeV from M87 in spring 2007 with the VERITAS atmospheric Cherenkov telescope array and discuss its correlation with the X-ray emission. The -ray emission is measured to be point-like with an intrinsic source radius less than 4.5 arcmin. The differential energy spectrum is fitted well by a power-law function: d�/dE=(7.4±1.3stat±1.5sys)× (E/TeV) (−2.31±0.17 stat±0.2sys) 10 −9 m −2 s −1 TeV −1 . We show strong evidence for a year-scale correlation between the -ray flux reported by TeV experiments and the X-ray emission measured by the ASM/RXTE observatory, and discuss the possible short-time-scale variability. These results imply that the -ray emission from M87 is more likely associated with the core of the galaxy than with other bright X-ray features in the jet.


The Astrophysical Journal | 2010

Veritas search for VHE gamma-ray emission from dwarf spheroidal galaxies

V. A. Acciari; T. Arlen; T. Aune; M. Beilicke; W. Benbow; D. Boltuch; S. M. Bradbury; J. H. Buckley; V. Bugaev; K. L. Byrum; A. Cannon; A. Cesarini; J. L. Christiansen; L. Ciupik; W. Cui; R. Dickherber; C. Duke; J. P. Finley; G. Finnegan; A. Furniss; N. Galante; S. Godambe; J. Grube; R. Guenette; G. Gyuk; D. Hanna; J. Holder; C. M. Hui; T. B. Humensky; A. Imran

Indirect dark matter searches with ground-based gamma-ray observatories provide an alternative for identifying the particle nature of dark matter that is complementary to that of direct search or accelerator production experiments. We present the results of observations of the dwarf spheroidal galaxies Draco, Ursa Minor, Bo¨ 1, and Willman 1 conducted by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). These galaxies are nearby dark matter dominated objects located at a typical distance of several tens of kiloparsecs for which there are good measurements of the dark matter density profile from stellar velocity measurements. Since the conventional astrophysical background of very high energy gamma rays from these objects appears to be negligible, they are good targets to search for the secondary gamma-ray photons produced by interacting or decaying dark matter particles. No significant gamma-ray flux above 200 GeV was detected from these four dwarf galaxies for a typical exposure of ∼20 hr. The 95% confidence upper limits on the integral gamma-ray flux are in the range (0.4–2.2) × 10 −12 photons cm −2 s −1 . We interpret this limiting flux in the context of pair annihilation of weakly interacting massive particles (WIMPs) and derive constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the WIMPs (� σv � 10 −23 cm 3 s −1 for mχ 300 GeVc −2 ). This limit is obtained under conservative assumptions regarding the dark matter distribution in dwarf galaxies and is approximately 3 orders of magnitude above the generic theoretical prediction for WIMPs in the minimal supersymmetric standard model framework. However, significant uncertainty exists in the dark matter distribution as well as the neutralino cross sections which under favorable assumptions could further lower this limit.


The Astrophysical Journal | 2010

Observations of the shell-type supernova remnant cassiopeia a at TeV energies with veritas

V. A. Acciari; E. Aliu; T. Arlen; T. Aune; M. Bautista; M. Beilicke; W. Benbow; D. Boltuch; S. M. Bradbury; J. H. Buckley; V. Bugaev; Yousaf M. Butt; K. L. Byrum; A. Cannon; A. Cesarini; Y. C. Chow; L. Ciupik; P. Cogan; W. Cui; R. Dickherber; C. Duke; T. Ergin; S. J. Fegan; J. P. Finley; G. Finnegan; P. Fortin; L. Fortson; A. Furniss; N. Galante; D. Gall

We report on observations of very high energy γ rays from the shell-type supernova remnant (SNR) Cassiopeia A with the Very Energetic Radiation Imaging Telescope Array System stereoscopic array of four imaging atmospheric Cherenkov telescopes in Arizona. The total exposure time for these observations is 22 hr, accumulated between September and November of 2007. The γ-ray source associated with the SNR Cassiopeia A was detected above 200 GeV with a statistical significance of 8.3σ. The estimated integral flux for this γ-ray source is about 3% of the Crab-Nebula flux. The photon spectrum is compatible with a power law dN/dE E –Γ with an index Γ = 2.61 ± 0.24stat ± 0.2sys. The data are consistent with a point-like source. We provide a detailed description of the analysis results and discuss physical mechanisms that may be responsible for the observed γ-ray emission.


The Astrophysical Journal | 2006

Multiwavelength Observations of the Blazar Markarian 421 in 2002 December and 2003 January

P. Rebillot; H. M. Badran; G. Blaylock; S. M. Bradbury; J. H. Buckley; D. A. Carter-Lewis; O. Celik; Y. C. Chow; P. Cogan; W. Cui; M. Daniel; C. Duke; Abe D. Falcone; S. J. Fegan; J. P. Finley; L. Fortson; G. H. Gillanders; J. Grube; K. Gutierrez; G. Gyuk; D. Hanna; J. Holder; D. Horan; S. B. Hughes; G. E. Kenny; M. Kertzman; D. Kieda; J. Kildea; K. Kosack; H. Krawczynski

We report on a multiwavelength campaign on the TeV γ-ray blazar Mrk 421 performed during 2002 December and 2003 January. These target of opportunity observations were initiated by the detection of X-ray and TeV γ-ray flares with the All Sky Monitor (ASM) on board the Rossi X-Ray Timing Explorer (RXTE) and the 10 m Whipple γ-ray telescope. The campaign included observational coverage in the radio (University of Michigan Radio Astronomy Observatory), optical (Boltwood, La Palma KVA 0.6 m; WIYN 0.9 m), X-ray (RXTE pointed telescopes), and TeV γ-ray (Whipple and HEGRA) bands. At TeV energies, the observations revealed several flares at intermediate flux levels, peaking between 1 and 1.5 times the flux from the Crab Nebula. While the time-averaged spectrum can be fitted with a single power law of photon index Γ = 2.8 from dNγ/dE ∝ E-Γ, we find some evidence for spectral variability. Confirming earlier results, the campaign reveals a rather loose correlation between the X-ray and TeV γ-ray fluxes. In one case, a very strong X-ray flare is not accompanied by a comparable TeV γ-ray flare. Although the source flux was variable in the optical and radio bands, the sparse sampling of the optical and radio light curves does not allow us to study the correlation properties in detail. We present a simple analysis of the data with a synchrotron self-Compton model, emphasizing that models with very high Doppler factors and low magnetic fields can describe the data.

Collaboration


Dive into the C. Duke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Fortson

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. H. Buckley

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Falcone

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. L. Byrum

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

V. Bugaev

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge