Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. E. Dahl is active.

Publication


Featured researches published by C. E. Dahl.


Physical Review Letters | 2011

Search for light dark matter in XENON10 data.

J. Angle; E. Aprile; F. Arneodo; L. Baudis; A. Bernstein; A. Bolozdynya; L. Coelho; C. E. Dahl; L. DeViveiros; A. D. Ferella; L.M.P. Fernandes; S. Fiorucci; R.J. Gaitskell; Karl-Ludwig Giboni; R. Gomez; R. Hasty; L. Kastens; J. Kwong; J. A. M. Lopes; N. Madden; A. Manalaysay; A. Manzur; D. N. McKinsey; M.E. Monzani; K. Ni; U. Oberlack; J. Orboeck; G. Plante; R. Santorelli; J.M.F. dos Santos

We report results of a search for light (≲10  GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Considering spin-independent dark matter-nucleon scattering, we exclude cross sections σ(n)>7×10(-42)  cm(2), for a dark matter particle mass m(χ)=7  GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.


Physical Review D | 2012

First Dark Matter Search Results from a 4-kg CF

E. Behnke; J. Behnke; S. J. Brice; D. Broemmelsiek; J. I. Collar; A. Conner; P. S. Cooper; M. Crisler; C. E. Dahl; D. Fustin; E. Grace; J. Hall; M. Hu; I. Levine; W. H. Lippincott; T. Moan; T. Nania; E. Ramberg; A. E. Robinson; A. Sonnenschein; M. Szydagis; E. Vázquez-Jáuregui

New data are reported from the operation of a 4.0 kg CF{sub 3}I bubble chamber in the 6800 foot deep SNOLAB underground laboratory. The effectiveness of ultrasound analysis in discriminating alpha decay background events from single nuclear recoils has been confirmed, with a lower bound of >99.3% rejection of alpha decay events. Twenty single nuclear recoil event candidates and three multiple bubble events were observed during a total exposure of 553 kg-days distributed over three different bubble nucleation thresholds. The effective exposure for single bubble recoil-like events was 437.4 kg-days. A neutron background internal to the apparatus, of known origin, is estimated to account for five single nuclear recoil events and is consistent with the observed rate of multiple bubble events. This observation provides world best direct detection constraints on WIMP-proton spin-dependent scattering for WIMP masses >20 GeV/c{sup 2} and demonstrates significant sensitivity for spin-independent interactions.


Physical Review Letters | 2015

_3

C. Amole; M. Ardid; D. M. Asner; D. Baxter; Ed Behnke; P. S. Bhattacharjee; H. Borsodi; M. Bou-Cabo; S. J. Brice; D. Broemmelsiek; K. Clark; J. I. Collar; P. S. Cooper; M. B. Crisler; C. E. Dahl; S. Daley; Madhusmita Das; F. Debris; N. Dhungana; J. Farine; I. Felis; R. Filgas; M. Fines-Neuschild; Francoise Girard; G. Giroux; M. Hai; J. Hall; O. Harris; C. M. Jackson; M. Jin

New data are reported from the operation of a 2 liter C3F8 bubble chamber in the SNOLAB underground laboratory, with a total exposure of 211.5 kg days at four different energy thresholds below 10 keV. These data show that C3F8 provides excellent electron-recoil and alpha rejection capabilities at very low thresholds. The chamber exhibits an electron-recoil sensitivity of <3.5×10(-10) and an alpha rejection factor of >98.2%. These data also include the first observation of a dependence of acoustic signal on alpha energy. Twelve single nuclear recoil event candidates were observed during the run. The candidate events exhibit timing characteristics that are not consistent with the hypothesis of a uniform time distribution, and no evidence for a dark matter signal is claimed. These data provide the most sensitive direct detection constraints on WIMP-proton spin-dependent scattering to date, with significant sensitivity at low WIMP masses for spin-independent WIMP-nucleon scattering.


Physical Review Letters | 2011

I Bubble Chamber Operated in a Deep Underground Site

E. Behnke; J. Behnke; S. J. Brice; D. Broemmelsiek; J. I. Collar; P. S. Cooper; M. B. Crisler; C. E. Dahl; D. Fustin; J. Hall; J. H. Hinnefeld; M. Hu; I. Levine; E. Ramberg; T. Shepherd; A. Sonnenschein; M. Szydagis

Data from the operation of a bubble chamber filled with 3.5 kg of CF3I in a shallow underground site are reported. An analysis of ultrasound signals accompanying bubble nucleations confirms that alpha decays generate a significantly louder acoustic emission than single nuclear recoils, leading to an efficient background discrimination. Three dark matter candidate events were observed during an effective exposure of 28.1  kg  day, consistent with a neutron background. This observation provides strong direct detection constraints on weakly interacting massive particle (WIMP)-proton spin-dependent scattering for WIMP masses >20  GeV/c2.


Physical Review D | 2009

Dark Matter Search Results from the PICO-2L C3F8 Bubble Chamber

J. Angle; E. Aprile; F. Arneodo; L. Baudis; A. Bernstein; A. Bolozdynya; L. Coelho; C. E. Dahl; L. DeViveiros; A. D. Ferella; L.M.P. Fernandes; S. Fiorucci; R.J. Gaitskell; Karl-Ludwig Giboni; R. Gomez; R. Hasty; L. Kastens; J. Kwong; J. A. M. Lopes; N. Madden; A. Manalaysay; A. Manzur; D. N. McKinsey; M.E. Monzani; K. Ni; U. Oberlack; J. Orboeck; G. Plante; R. Santorelli; J.M.F. dos Santos

It has been suggested that dark matter particles which scatter inelastically from detector target nuclei could explain the apparent incompatibility of the DAMA modulation signal (interpreted as evidence for particle dark matter) with the null results from CDMS-II and XENON10. Among the predictions of inelastically interacting dark matter are a suppression of low-energy events, and a population of nuclear recoil events at higher nuclear recoil equivalent energies. This is in stark contrast to the well-known expectation of a falling exponential spectrum for the case of elastic interactions. We present a new analysis of XENON10 dark matter search data extending to E{sub nr} = 75 keV nuclear recoil equivalent energy. Our results exclude a significant region of previously allowed parameter space in the model of inelastically interacting dark matter. In particular, it is found that dark matter particle masses m{sub x} {approx}> 150 GeV are disfavored.


Physical Review Letters | 2006

Improved limits on spin-dependent WIMP-proton interactions from a two liter CF3I bubble chamber.

E. Aprile; C. E. Dahl; L. de Viveiros; R.J. Gaitskell; K. L. Giboni; J. Kwong; P. Majewski; K. Ni; T. Shutt; M. Yamashita

We report the first measurements of the absolute ionization yield of nuclear recoils in liquid xenon, as a function of energy and electric field. Independent experiments were carried out with two dual-phase time-projection chamber prototypes, developed for the XENON dark matter project. We find that the charge yield increases with decreasing recoil energy, and exhibits only a weak field dependence. These results are the first unambiguous demonstration of the capability of dual-phase xenon detectors to discriminate between electron and nuclear recoils down to 20 keV, a key requirement for a sensitive dark matter search.


Physical Review D | 2016

Constraints on inelastic dark matter from XENON10

C. Amole; M. Ardid; I. J. Arnquist; D. M. Asner; D. Baxter; E. Behnke; Pijushpani Bhattacharjee; H. Borsodi; M. Bou-Cabo; S. J. Brice; D. Broemmelsiek; K. Clark; J. I. Collar; P. S. Cooper; M. Crisler; C. E. Dahl; M. Das; F. Debris; S. Fallows; J. Farine; I. Felis; R. Filgas; M. Fines-Neuschild; F. Girard; G. Giroux; J. Hall; O. Harris; E. W. Hoppe; C. M. Jackson; M. Jin

New data are reported from a second run of the 2-liter PICO-2L C3F8 bubble chamber with a total exposure of 129 kg-days at a thermodynamic threshold energy of 3.3 keV. These data show that measures taken to control particulate contamination in the superheated fluid resulted in the absence of the anomalous background events observed in the first run of this bubble chamber. One single nuclear-recoil event was observed in the data, consistent both with the predicted background rate from neutrons and with the observed rate of unambiguous multiple-bubble neutron scattering events. The chamber exhibits the same excellent electron-recoil and alpha decay rejection as was previously reported. These data provide the most stringent direct detection constraints on weakly interacting massive particle (WIMP)-proton spin-dependent scattering to date for WIMP masses <50 GeV/c2.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2009

Simultaneous measurement of ionization and scintillation from nuclear recoils in liquid xenon for a dark matter experiment.

P. Sorensen; A. Manzur; C. E. Dahl; J. Angle; E. Aprile; F. Arneodo; L. Baudis; A. Bernstein; A. Bolozdynya; L. Coelho; L. DeViveiros; A. D. Ferella; L.M.P. Fernandes; S. Fiorucci; R.J. Gaitskell; Karl-Ludwig Giboni; R. Gomez; R. Hasty; L. Kastens; J. Kwong; J. A. M. Lopes; N. Madden; A. Manalaysay; D. N. McKinsey; M.E. Monzani; K. Ni; U. Oberlack; J. Orboeck; G. Plante; R. Santorelli

XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S1) and ionization signal (S2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield View the MathML source and the absolute ionization yield View the MathML source, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of View the MathML source is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our View the MathML source measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is View the MathML source. A knowledge of the ionization yield View the MathML source is necessary to establish the trigger threshold of the experiment. The ionization yield View the MathML source is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.


Physical Review D | 2011

Improved dark matter search results from PICO-2L Run 2

P. Sorensen; C. E. Dahl

We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al.. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well-described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.


Physical Review D | 2013

The scintillation and ionization yield of liquid xenon for nuclear recoils

Ed Behnke; T. Benjamin; S. J. Brice; D. Broemmelsiek; J. I. Collar; P. S. Cooper; M. B. Crisler; C. E. Dahl; Drew Fustin; J. Hall; C. Harnish; Ilan Levine; W. H. Lippincott; Timothy Moan; T. Nania; R. Neilson; E. Ramberg; A. E. Robinson; M. Ruschman; A. Sonnenschein; E. Vázquez-Jáuregui; R. A. RIvera; L. Uplegger

Here, we measured the energy threshold and efficiency for bubble nucleation from iodine recoils in a CF3I bubble chamber in the energy range of interest for a dark matter search. These interactions cannot be probed by standard neutron calibration methods, so we develop a new technique by observing the elastic scattering of 12 GeV/c negative pions. The pions are tracked with a silicon pixel telescope and the reconstructed scattering angle provides a measure of the nuclear recoil kinetic energy. The bubble chamber was operated with a nominal threshold of (13.6±0.6) keV. Interpretation of the results depends on the response to fluorine and carbon recoils, but in general we find agreement with the predictions of the classical bubble-nucleation theory. Moreover, this measurement confirms the applicability of CF3I as a target for spin-independent dark matter interactions and represents a novel technique for calibration of superheated fluid detectors.

Collaboration


Dive into the C. E. Dahl's collaboration.

Top Co-Authors

Avatar

J. Kwong

Princeton University

View shared research outputs
Top Co-Authors

Avatar

A. Bolozdynya

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

J. Hall

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Bernstein

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge