Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C.E. Pollard is active.

Publication


Featured researches published by C.E. Pollard.


British Journal of Pharmacology | 2011

How can we improve our understanding of cardiovascular safety liabilities to develop safer medicines

H. G. Laverty; C. Benson; Elizabeth J. Cartwright; Michael J. Cross; C J Garland; Tim Hammond; Cameron Holloway; N. McMahon; J. Milligan; B.K. Park; Munir Pirmohamed; C.E. Pollard; John Radford; N. Roome; P. Sager; S. Singh; Tobias Suter; W. Suter; Andrew W. Trafford; Paul G.A. Volders; Rob Wallis; Roslyn Weaver; M. York; Jean-Pierre Valentin

Given that cardiovascular safety liabilities remain a major cause of drug attrition during preclinical and clinical development, adverse drug reactions, and post‐approval withdrawal of medicines, the Medical Research Council Centre for Drug Safety Science hosted a workshop to discuss current challenges in determining, understanding and addressing ‘Cardiovascular Toxicity of Medicines’. This article summarizes the key discussions from the workshop that aimed to address three major questions: (i) what are the key cardiovascular safety liabilities in drug discovery, drug development and clinical practice? (ii) how good are preclinical and clinical strategies for detecting cardiovascular liabilities? and (iii) do we have a mechanistic understanding of these liabilities? It was concluded that in order to understand, address and ultimately reduce cardiovascular safety liabilities of new therapeutic agents there is an urgent need to:


British Journal of Pharmacology | 2010

An introduction to QT interval prolongation and non-clinical approaches to assessing and reducing risk

C.E. Pollard; N. Abi Gerges; Matthew Bridgland-Taylor; A. Easter; T.G. Hammond; J.-P. Valentin

Owing to its association with Torsades de Pointes, drug‐induced QT interval prolongation has been and remains a significant hurdle to the development of safe, effective medicines. Genetic and pharmacological evidence highlighting the pivotal role the human ether‐a‐go‐go‐related gene (hERG) channel was a critical step in understanding how to start addressing this issue. It led to the development of hERG assays with the rapid throughput needed for the short timescales required in early drug discovery. The resulting volume of hERG data has fostered in silico models to help chemists design compounds with reduced hERG potency. In early drug discovery, a pragmatic approach based on exceeding a given potency value has been required to decide when a compound is likely to carry a low QT risk, to support its progression to late‐stage discovery. At this point, the in vivo efficacy and metabolism characteristics of the potential drug are generally defined, as well its safety profile, which includes usually a dog study to assess QT interval prolongation risk. The hERG and in vivo QT data, combined with the likely indication and the estimated free drug level for efficacy, are put together to assess the risk that the potential drug will prolong QT in man. Further data may be required to refine the risk assessment before making the major investment decisions for full development. The non‐clinical data are essential to inform decisions about compound progression and to optimize the design of clinical QT studies.


British Journal of Pharmacology | 2006

A rabbit Langendorff heart proarrhythmia model: predictive value for clinical identification of Torsades de Pointes.

Lawrence Cl; Matthew Bridgland-Taylor; C.E. Pollard; T.G. Hammond; Jean-Pierre Valentin

The rabbit isolated Langendorff heart model (SCREENIT) was used to investigate the proarrhythmic potential of a range of marketed drugs or drugs intended for market. These data were used to validate the SCREENIT model against clinical outcomes.


British Journal of Pharmacology | 2011

On the relationship between block of the cardiac Na+ channel and drug-induced prolongation of the QRS complex

Alexander R. Harmer; J.-P. Valentin; C.E. Pollard

BACKGROUND AND PURPOSE Inhibition of the human cardiac Na+ channel (hNav1.5) can prolong the QRS complex and has been associated with increased mortality in patients with underlying cardiovascular disease. The safety implications of blocking hNav1.5 channels suggest the need to test for this activity early in drug discovery in order to design out any potential liability. However, interpretation of hNav1.5 blocking potency requires knowledge of how hNav1.5 block translates into prolongation of the QRS complex.


British Journal of Pharmacology | 2008

Strategies to reduce the risk of drug‐induced QT interval prolongation: a pharmaceutical company perspective

C.E. Pollard; J.-P. Valentin; T.G. Hammond

Drug‐induced prolongation of the QT interval is having a significant impact on the ability of the pharmaceutical industry to develop new drugs. The development implications for a compound causing a significant effect in the ‘Thorough QT/QTc Study’—as defined in the clinical regulatory guidance (ICH E14)—are substantial. In view of this, and the fact that QT interval prolongation is linked to direct inhibition of the hERG channel, in the early stages of drug discovery the focus is on testing for and screening out hERG activity. This has led to understanding of how to produce low potency hERG blockers whilst retaining desirable properties. Despite this, a number of factors mean that when an integrated risk assessment is generated towards the end of the discovery phase (by conducting at least an in vivo QT assessment) a QT interval prolongation risk is still often apparent; inhibition of hERG channel trafficking and partitioning into cardiac tissue are just two confounding factors. However, emerging information suggests that hERG safety margins have high predictive value and that when hERG and in vivo non‐clinical data are combined, their predictive value to man, whilst not perfect, is >80%. Although understanding the anomalies is important and is being addressed, of greater importance is developing a better understanding of TdP, with the aim of being able to predict TdP rather than using an imperfect surrogate marker (QT interval prolongation). Without an understanding of how to predict TdP risk, high‐benefit drugs for serious indications may never be marketed.


Toxicology and Applied Pharmacology | 2012

Validation of an in vitro contractility assay using canine ventricular myocytes.

Alexander R. Harmer; Najah Abi-Gerges; Michael J. Morton; Georgia F. Pullen; Jean-Pierre Valentin; C.E. Pollard

Measurement of cardiac contractility is a logical part of pre-clinical safety assessment in a drug discovery project, particularly if a risk has been identified or is suspected based on the primary- or non-target pharmacology. However, there are limited validated assays available that can be used to screen several compounds in order to identify and eliminate inotropic liability from a chemical series. We have therefore sought to develop an in vitro model with sufficient throughput for this purpose. Dog ventricular myocytes were isolated using a collagenase perfusion technique and placed in a perfused recording chamber on the stage of a microscope at ~36 °C. Myocytes were stimulated to contract at a pacing frequency of 1 Hz and a digital, cell geometry measurement system (IonOptix™) was used to measure sarcomere shortening in single myocytes. After perfusion with vehicle (0.1% DMSO), concentration-effect curves were constructed for each compound in 4-30 myocytes taken from 1 or 2 dog hearts. The validation test-set was 22 negative and 8 positive inotropes, and 21 inactive compounds, as defined by their effect in dog, cynolomolgous monkey or humans. By comparing the outcome of the assay to the known in vivo contractility effects, the assay sensitivity was 81%, specificity was 75%, and accuracy was 78%. With a throughput of 6-8 compounds/week from 1 cell isolation, this assay may be of value to drug discovery projects to screen for direct contractility effects and, if a hazard is identified, help identify inactive compounds.


Toxicological Sciences | 2015

Assessment of cardiomyocyte contraction in human-induced pluripotent stem cell-derived cardiomyocytes.

Amy Pointon; Alexander R. Harmer; Ian L. Dale; Najah Abi-Gerges; Joanne Bowes; C.E. Pollard; Helen Garside

Functional changes to cardiomyocytes are a common cause of attrition in preclinical and clinical drug development. Current approaches to assess cardiomyocyte contractility in vitro are limited to low-throughput methods not amenable to early drug discovery. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) were used to assess their suitability to detect drug-induced changes in cardiomyocyte contraction. Application of field stimulation and measurement of cardiac contraction (IonOptix edge detection) and Ca(2+) transients confirmed hiPS-CMs to be a suitable model to investigate drug-induced changes in cardiomyocyte contractility. Using a live cell, fast kinetic fluorescent assay with a Ca(2+) sensitive dye to test 31 inotropic and 20 non-inotropic compounds in vivo, we report that hiPS-CMs provide a high-throughput experimental model to detect changes in cardiomyocyte contraction that is applicable to early drug discovery with a sensitivity and specificity of 87% and 70%, respectively. Moreover, our data provide evidence of the detection of this liability at therapeutically relevant concentrations with throughput amenable to influencing chemical design in drug discovery. Measurement of multiple parameters of the Ca(2+) transient in addition to the number of Ca(2+) transients offered no insight into the mechanism of cardiomyocyte contraction.


Journal of Molecular and Cellular Cardiology | 2013

Preservation of cardiomyocytes from the adult heart.

Najah Abi-Gerges; Amy Pointon; Georgia F. Pullen; Michael J. Morton; Karen Oldman; Duncan Armstrong; Jean-Pierre Valentin; C.E. Pollard

Cardiomyocytes represent one of the most useful models to conduct cardiac research. A single adult heart yields millions of cardiomyocytes, but these cells do not survive for long after isolation. We aimed to determine whether inhibition of myosin II ATPase that is essential for muscle contraction may preserve fully differentiated adult cardiomyocytes. Using inhibitors of the myosin II ATPase, blebbistatin and N-benzyl-p-toluene sulphonamide (BTS), we preserved freshly isolated fully differentiated adult primary cardiomyocytes that were stored at a refrigerated temperature. Specifically, preserved cardiomyocytes stayed viable for a 2-week period with a stable expression of cardiac genes and retained the expression of key markers characteristic of cardiomyocytes. Furthermore, voltage-clamp, action potential, calcium transient and contractility studies confirmed that the preserved cardiomyocytes are comparable to freshly isolated cells. Long-term exposure of preserved cardiomyocytes to four tyrosine kinase inhibitors, sunitinib malate, dasatinib, sorafenib tosylate and imatinib mesylate, revealed their potential to induce cardiac toxicity that was manifested with a decrease in contractility and induction of cell death, but this toxicity was not observed in acute experiments conducted over the time course amenable to freshly prepared cardiomyocytes. This study introduces the concept that the inhibition of myosin II ATPase safeguards the structure and function of fully differentiated adult cardiomyocytes. The fact that these preserved cardiomyocytes can be used for numerous days after preparation makes them a robust and versatile tool in cardiac research and allows the investigation of long-term exposure to novel drugs on cardiomyocyte function.


Journal of Pharmacological and Toxicological Methods | 2017

Assessment of extracellular field potential and Ca2 + transient signals for early QT/pro-arrhythmia detection using human induced pluripotent stem cell-derived cardiomyocytes

Najah Abi-Gerges; Amy Pointon; Karen Oldman; Martin Brown; Mark Pilling; Clare E. Sefton; Helen Garside; C.E. Pollard

Cardiovascular toxicity is a prominent reason for failures in drug development, resulting in the demand for assays that can predict this liability in early drug discovery. We investigated whether iCell® cardiomyocytes have utility as an early QT/TdP screen. Thirty clinical drugs with known QT/TdP outcomes were evaluated blind using label-free microelectrode array (parameters measured were beating period (BP), field potential duration (FPD), fast Na+ amplitude and slope) and live cell, fast kinetic fluorescent Ca2+ transient FLIPR® Tetra (parameters measured were peak count, width, amplitude) systems. Many FPD-altering drugs also altered BP. Correction for BP, using a Log-Log (LL) model, was required to appropriately interpret direct drug effects on FPD. In comparison with human QT effects and when drug activity was to be predicted at top test concentration (TTC), LL-corrected FPD and peak count had poor assay sensitivity and specificity values: 13%/64% and 65%/11%, respectively. If effective free therapeutic plasma concentration (EFTPC) was used instead of TTC, the values were 0%/100% and 6%/100%, respectively. When compared to LL-corrected FPD and peak count, predictive values of uncorrected FPD, BP, width and amplitude were not much different. If pro-arrhythmic risk was to be predicted using Ca2+ transient data, the values were 67%/100% and 78%/53% at EFTPC and TTC, respectively. Thus, iCell® cardiomyocytes have limited value as an integrated QT/TdP assay, highlighting the urgent need for improved experimental alternatives that may offer an accurate integrated cardiomyocyte safety model for supporting the development of new drugs without QT/TdP effects.


Toxicological Sciences | 2015

Enhanced characterization of contractility in cardiomyocytes during early drug safety assessment.

Larissa Butler; Caroline Cros; Karen Oldman; Alex Harmer; Amy Pointon; C.E. Pollard; Najah Abi-Gerges

We sought to investigate whether drug-induced changes in contractility were affected by pacing rates that represent the range of heart rates encountered in vivo. Using the cell geometry measurement system (IonOptix), we paced dog cardiomyocytes at different cycle lengths (CLs) of 2000, 1000, 500, and 333.3 ms, before and after exposure to 13 inotropic drugs. Time course data using vehicle control (0.1% dimethyl sulfoxide (DMSO)) demonstrated stability of the system at all CLs tested. Seven positive inotropes (eg isoproterenol) exerted rate-dependent increases in sarcomere shortening (Sarc. short.; maximal effect at a CL of 333.3 ms [0.1 µM isoproterenol increased Sarc. short. by 41.1% and 145.9% at 2000 and 333.3 ms, respectively]). Omecamtiv mecarbil showed an atypical profile (increased Sarc. short. at 2000 ms [106.9%] and decreased at 333.3 ms [IC(50) = 0.64 µM]). Four negative inotropes (eg flecainide) showed rate-independent inhibition of Sarc. short. (IC(50)s: 3.3 µM [2000 ms] versus 2.3 µM [333.3 ms]). The remaining negative inotropes, verapamil, and BTS (N-benzyl-p-toluene sulphonamide) produced an increase (IC(50)s: 3.9 µM [2000 ms] versus 0.043 µM [333.3ms]) and decrease (IC(50)s: 18.3 µM [2000 ms] versus 34.0 µM [333.3 ms]) in potency, respectively. Negative inotropes (eg flecainide, BTS, and verapamil) decreased the area of the Ca(2+) transient versus Sarc. short. hysteresis loop, although rate dependency was seen with verapamil only. Positive inotropes (eg isoproterenol and levosimendan) induced a rate-dependent increase in the area, however Omecamtiv mecarbil increased and decreased the area at CLs of 2000 and 333.3 ms, respectively. Thus, the use of different pacing rates may improve the detection of inotropes in early drug discovery and illustrate the potential for finger-printing different mechanisms of action.

Collaboration


Dive into the C.E. Pollard's collaboration.

Researchain Logo
Decentralizing Knowledge