Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Eiroa is active.

Publication


Featured researches published by C. Eiroa.


Astronomy and Astrophysics | 2001

EXPORT: Spectral classification and projected rotational velocities of Vega-type and pre-main sequence stars

A. Mora; Bruno Merín; E. Solano; B. Montesinos; D. de Winter; C. Eiroa; R. Ferlet; C. A. Grady; J. K. Davies; L. F. Miranda; R. D. Oudmaijer; J. Palacios; A. Quirrenbach; Alan W. Harris; H. Rauer; Andrew Collier Cameron; Hans J. Deeg; Francisco Garzon; Alan J. Penny; J. Schneider; Y. Tsapras; P. R. Wesselius

In this paper we present the rst comprehensive results extracted from the spectroscopic campaigns car- ried out by the EXPORT (EXoPlanetary Observational Research Team) consortium. During 1998{1999, EXPORT carried out an intensive observational eort in the framework of the origin and evolution of protoplanetary sys- tems in order to obtain clues on the evolutionary path from the early stages of the pre-main sequence to stars with planets already formed. The spectral types of 70 stars, and the projected rotational velocities, v sini ,o f 45 stars, mainly Vega-type and pre-main sequence, have been determined from intermediate- and high-resolution spectroscopy, respectively. The rst part of the work is of fundamental importance in order to accurately place the stars in the HR diagram and determine the evolutionary sequences; the second part provides information on the kinematics and dynamics of the stars and the evolution of their angular momentum. The advantage of using the same observational conguration and methodology for all the stars is the homogeneity of the set of pa- rameters obtained. Results from previous work are revised, leading in some cases to completely new determinations of spectral types and projected rotational velocities; for some stars no previous studies were available.


Astronomy and Astrophysics | 2011

Estimation of the XUV radiation onto close planets and their evaporation

J. Sanz-Forcada; G. Micela; Ignasi Ribas; A. M. T. Pollock; C. Eiroa; Angel Velasco; E. Solano; David García-Álvarez

Context. The current distribution of planet mass vs. incident stellar X-ray flux supports the idea that photoevaporation of the atmosphere may take place in close-in planets. Integrated effects have to be accounted for. A proper calculation of the mass loss rate through photoevaporation requires the estimation of the total irradiation from the whole XUV (X-rays and extreme ultraviolet, EUV) range. Aims. The purpose of this paper is to extend the analysis of the photoevaporation in planetary atmospheres from the accessible X-rays to the mostly unobserved EUV range by using the coronal models of stars to calculate the EUV contribution to the stellar spectra. The mass evolution of planets can be traced assuming that thermal losses dominate the mass loss of their atmospheres. Methods. We determine coronal models for 82 stars with exoplanets that have X-ray observations available. Then a synthetic spectrum is produced for the whole XUV range (∼1−912 A). The determination of the EUV stellar flux, calibrated with real EUV data, allows us to calculate the accumulated effects of the XUV irradiation on the planet atmosphere with time, as well as the mass evolution for planets with known density. Results. We calibrate for the first time a relation of the EUV luminosity with stellar age valid for late-type stars. In a sample of 109 exoplanets, few planets with masses larger than ∼1.5 MJ receive high XUV flux, suggesting that intense photoevaporation takes place in a short period of time, as previously found in X-rays. The scenario is also consistent with the observed distribution of planet masses with density. The accumulated effects of photoevaporation over time indicate that HD 209458b may have lost 0.2 MJ since an age of 20 Myr. Conclusions. Coronal radiation produces rapid photoevaporation of the atmospheres of planets close to young late-type stars. More complex models are needed to explain the observations fully. Spectral energy distributions in the XUV range are made available for stars in the sample through the Virtual Observatory for the use in future planet atmospheric models.


Astronomy and Astrophysics | 2013

DUst around NEarby Stars. The survey observational results

C. Eiroa; A. Mora; B. Montesinos; Olivier Absil; J.-Ch. Augereau; A. Bayo; G. Bryden; W. C. Danchi; C. del Burgo; S. Ertel; M. Fridlund; A. M. Heras; Alexander V. Krivov; R. Launhardt; R. Liseau; T. Löhne; J. Maldonado; G. L. Pilbratt; Aki Roberge; J. Rodmann; J. Sanz-Forcada; E. Solano; Karl R. Stapelfeldt; Philippe Thebault; Sebastian Wolf; D. R. Ardila; Maria Jesus Arevalo; C. Beichmann; V. Faramaz; B. M. González-García

Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts. Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. Methods. We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 mu m were obtained, complemented in some cases with observations at 70 mu m, and at 250, 350 and 500 mu m using SPIRE. The observing strategy was to integrate as deep as possible at 100 mu m to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of similar to 12.1% +/- 5% before Herschel to similar to 20.2% +/- 2%. A significant fraction (similar to 52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160 mu m range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.


Astrobiology | 2009

Darwin - A Mission to Detect and Search for Life on Extrasolar Planets

Charles S. Cockell; A. Léger; M. Fridlund; T. M. Herbst; Lisa Kaltenegger; Olivier Absil; Charles A. Beichman; Willy Benz; Michel Blanc; Andre Brack; A. Chelli; L. Colangeli; H. Cottin; F. Coudé du Foresto; W. C. Danchi; Denis Defrere; J. W. den Herder; C. Eiroa; J. S. Greaves; Th. Henning; K. J. Johnston; Hugh R. A. Jones; Lucas Labadie; H. Lammer; R. Launhardt; Peter R. Lawson; Oliver P. Lay; J.-M. LeDuigou; R. Liseau; Fabien Malbet

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.


Astronomy and Astrophysics | 2002

On the simultaneous optical and near-infrared variability of pre-main sequence stars

C. Eiroa; R. D. Oudmaijer; J. K. Davies; D. de Winter; Francisco Garzon; J. Palacios; A. Alberdi; R. Ferlet; C. A. Grady; Andrew Collier Cameron; Hans J. Deeg; Alan W. Harris; K. Horne; Bruno Merín; L. F. Miranda; B. Montesinos; A. Mora; Alan J. Penny; A. Quirrenbach; H. Rauer; Jakob P. Schneider; E. Solano; Y. Tsapras; P. R. Wesselius

For a complete understanding of the physical processes causing the photometric variability of pre-main sequence systems, simultaneous optical and near-IR observations are required to disentangle the emission from the stars and that from their associated circumstellar disks. Data of this sort are extremely rare and little systematic work has been reported to date. The work presented in this paper is a systematic attempt in this direction. It presents an analysis of the simultaneous optical and near-IR photometric variability of 18 Herbig Ae/Be and T Tauri stars which were observed in October 98 by the EXPORT collaboration. The time dierence between the UBVRI and JHK measurements is less than 1 hour in50% of the data and the largest dierence is around 2 hours in only10% of the data. Twelve stars appear to show a correlation between the optical and near-IR variability trends, which suggests a common physical origin such as spots and/or variable extinction. The optical and near-IR variability is uncorrelated in the rest of the objects, which suggests it originates in distinctly dierent regions. In general, the optical variability qualitatively follows the predictions of starspots or variable extinction. As far as the near-IR is concerned, the simultaneity of the observations demonstrates that for most objects the flux is largely produced by their circumstellar disks and, consequently, in many cases the near-IR fluctuations must be attributed to structural variations of such disks producing variations of their thermal emission and/or scattered light. The observed near-IR changes of up to around 1 mag on timescales of 1{2 days provide interesting challenges for understanding the mechanisms generating such remarkable variabilities, an issue insuciently investigated until now but one which deserves further theoretical and modeling eorts.


Astronomy and Astrophysics | 2001

A photometric catalogue of southern emission-line stars ?;??

D. de Winter; M.E. van den Ancker; A. Maira; H. R. E. Tjin A Djie; I. Redondo; C. Eiroa; Frank J. Molster

We present a catalogue of previously unpublished optical and infrared photometry for a sample of 162 emission-line objects and shell stars visible from the southern hemisphere. The data were obtained between 1978 and 1997 in the Walraven (WULBV), Johnson/Cousins (UBV(RI)c) and ESO and SAAO near-infrared (JHKLM) photometric systems. Most of the observed objects are Herbig Ae/Be (HAeBe) stars or HAeBe candidates appearing in the list of HAeBe candidates of Th e et al. (1994), although several B(e) stars, LBVs and T Tauri stars are also included in our sample. For many of the stars the data presented here are the rst photo-electric measurements in the literature. The resulting catalogue consists of 1809 photometric measurements. Optical variability was detected in 66 out of the 116 sources that were observed more than once. 15 out of the 50 stars observed multiple times in the infrared showed variability at 2.2 m( K band).


Astronomy and Astrophysics | 2009

Parameters of Herbig Ae/Be and Vega-type stars ⋆

B. Montesinos; C. Eiroa; A. Mora; Bruno Merín

Context. This work presents the characterization of 27 young early-type stars, most of them in the age range 1‐10 Myr, and three ‐suspected‐ hot companions of post-T Tauri stars belonging to the Lindroos binary sample. Most of these objects show IR excesses in their spectral energy distributions, which are indicati ve of the presence of disks. The work is relevant in the fields o f stellar physics, physics of disks and formation of planetary systems. Aims. The aim of the work is the determination of the effective temperature, gravity, metallicity, mass, luminosi ty and age of these stars. An accurate modelling of their disks needs, as a previ ous step, the knowledge of most of these parameters, since they will determine the energy input received by the disk and hence, its geometry and global properties. Methods. Spectral energy distributions and mid-resolution spectra were used to estimate Teff, the effective temperature. The comparison of the profiles of the Balmer lines with synthetic pro files provides the value of the stellar gravity, g∗. High-resolution optical observations and synthetic spectra are used to estimate the metallicity, [M/H]. Once Teff, g∗ and [M/H] are known for each star, evolutionary tracks and isochrones provide estimations of the mass, luminosity, age and distances (or upper limits in some cases). The method is original in the sense that it is distance-indep endent, i.e. the estimation of the stellar parameters does n ot require, as it happens in other works, the knowledge of the distance to the object. Results. Stellar parameters (effective temperature, gravity, metallicity, mass, luminosi ty, age and distances ‐or upper limits) are obtained for the sample of stars mentioned above. A detailed discussion on some individual objects, in particular VV Ser, RR Tau, 49 Cet and the three suspected hot companions of post-T Tauris, is presented. Conclusions. These results, apart from their intrinsic interest, would b e extremely valuable to proceed a step further and attempt to model the disks surrounding the stars. The paper also shows the diffi culty posed by the morphology and behaviour of the system star+disk in the computation of the stellar parameters.


Astronomy and Astrophysics | 2011

Accretion rates and accretion tracers of Herbig Ae/Be stars

I. Mendigutía; Nuria Calvet; B. Montesinos; A. Mora; James Muzerolle; C. Eiroa; R. D. Oudmaijer; Bruno Merín

Context. The scarcity of accretion rate estimates and accretion tracers available for Herbig Ae/Be (HAeBe) stars contrasts with the extensive studies for lower mass objects. Aims. This work aims to derive accretion rates from the UV Balmer excess for a sample of 38 HAeBe stars. We look for possible empirical correlations with the strength of the Hα ,( Oi)6300, and Brγ emission lines. Methods. Shock modelling within the context of magnetospheric accretion (MA) was applied to each star. We obtained the accretion rates from the excess in the Balmer discontinuity, derived from mean values of multi-epoch Johnsons UBphotometry. The accretion rates were related to both mean Hα luminosities, Hα 10% widths, and (O i)6300 luminosities from simultaneous spectra, and to Brγ luminosities from the literature. Results. The typical -median- mass accretion rate is 2 × 10 −7 Myr −1 in our sample, 36% of the stars showing values ≤10 −7 Myr −1 , 35% between 10 −7 and 10 −6 , and 29% > 10 −6 Myr −1 . The model fails to reproduce the large Balmer excesses shown by the four hottest stars (T∗ > 12 000 K). When accretion is related to the stellar masses and luminosities (1 ≤ M∗/M� ≤ 6; 2 ≤ L∗/L� ≤ 10 3 ), we derive u Macc ∝ M 5 and Lacc ∝ L 1.2 ∗ , with scatter. Empirical calibrations relating the accretion and the Hα ,( Oi)6300, and Brγ luminosities are provided. The slopes in our expressions are slightly shallower than those for lower mass stars, but the difference is within the uncertainties, except for the (O i)6300 line. The Hα 10% width is uncorrelated with u Macc, unlike for the lower mass regime. The mean Hα width shows higher values as the projected rotational velocities of HAe stars increase, which agrees with MA. The accretion rate variations in the sample are typically lower than 0.5 dex on timescales of days to months. Our data suggest that the changes in the Balmer excess are uncorrelated to the simultaneous changes of the line luminosities. Conclusions. The Balmer excesses and Hα line widths of HAe stars can be interpreted within the context of MA, which is not the case for several HBes. The steep trend relating u Macc and M∗ can be explained from the mass-age distribution characterizing HAeBe stars. The line luminosities used for low-mass objects are also valid to estimate typical accretion rates for the intermediate-mass regime under similar empirical expressions. However, we suggest that several of these calibrations are driven by the stellar luminosity.


Astronomy and Astrophysics | 2010

Chromospheric activity and rotation of FGK stars in the solar vicinity - An estimation of the radial velocity jitter

R. M. Martínez-Arnáiz; J. Maldonado; D. Montes; C. Eiroa; B. Montesinos

Context. Chromospheric activity produces both photometric and spectroscopic variations that can be mistaken as planets. Large spots crossing the stellar disc can produce planet-like periodic variations in the light curve of a star. These spots clearly affect the spectral line profiles, and their perturbations alter the line centroids creating a radial velocity jitter that might “contaminate” the variations induced by a planet. Precise chromospheric activity measurements are needed to estimate the activity-induced noise that should be expected for a given star. Aims. We obtain precise chromospheric activity measurements and projected rotational velocities for nearby (d ≤ 25 pc) cool (spectral types F to K) stars, to estimate their expected activity-related jitter. As a complementary objective, we attempt to obtain relationships between fluxes in different activity indicator lines, that permit a transformation of traditional activity indicators, i.e., Ca II H & K lines, to others that hold noteworthy advantages. Methods. We used high resolution (~50 000) echelle optical spectra. Standard data reduction was performed using the IRAF ECHELLE package. To determine the chromospheric emission of the stars in the sample, we used the spectral subtraction technique. We measured the equivalent widths of the chromospheric emission lines in the subtracted spectrum and transformed them into fluxes by applying empirical equivalent width and flux relationships. Rotational velocities were determined using the cross-correlation technique. To infer activity-related radial velocity (RV) jitter, we used empirical relationships between this jitter and the R’_HK index. Results. We measured chromospheric activity, as given by different indicators throughout the optical spectra, and projected rotational velocities for 371 nearby cool stars. We have built empirical relationships among the most important chromospheric emission lines. Finally, we used the measured chromospheric activity to estimate the expected RV jitter for the active stars in the sample.


Astronomy and Astrophysics | 2001

EXPORT: Optical photometry and polarimetry of Vega-type and pre-main sequence stars ?

R. D. Oudmaijer; J. Palacios; C. Eiroa; J. K. Davies; D. de Winter; R. Ferlet; Francisco Garzon; C. A. Grady; Andrew Collier Cameron; Hans J. Deeg; A. W. Harris; K. Horne; Bruno Merín; L. F. Miranda; B. Montesinos; A. Mora; Alan J. Penny; A. Quirrenbach; H. Rauer; Jakob P. Schneider; E. Solano; Y. Tsapras; P. R. Wesselius

This paper presents optical UBVRI broadband photo-polarimetry of the EXPORT sample obtained at the 2.5 m Nordic Optical Telescope. The database consists of multi-epoch photo-polarimetry of 68 pre-main-sequence and main-sequence stars. An investigation of the polarization variability indicates that 22 objects are variable at the 3 sigma level in our data. All these objects are pre-main sequence stars, consisting of both T Tauri and Herbig Ae/Be objects while the main sequence, Vega type and post-T Tauri type objects are not variable. The polarization properties of the variable sources are mostly indicative of the UXOR-type behaviour; the objects show highest polarization when the brightness is at minimum. We add seven new objects to the class of UXOR variables (BH Cep, VX Cas, DK Tau, HK Ori, LkH alpha 234, KK Oph and RY Ori). The main reason for their discovery is the fact that our data-set is the largest in its kind, indicating that many more young UXOR-type pre-main sequence stars remain to be discovered. The set of Vega-like systems has been investigated for the presence of intrinsic polarization. As they lack variability, this was done using indirect methods, and apart from the known case of BD+31 degrees 643, the following stars were found to be strong candidates to exhibit polarization due to the presence of circumstellar disks: 51 Oph, BD+31 degrees 643C, HD 58647 and HD 233517.

Collaboration


Dive into the C. Eiroa's collaboration.

Top Co-Authors

Avatar

B. Montesinos

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

W. C. Danchi

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

G. Meeus

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

R. Liseau

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.-C. Augereau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Aki Roberge

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Mora

Autonomous University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge