Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Farrington is active.

Publication


Featured researches published by C. Farrington.


The Astrophysical Journal | 2012

Stellar Diameters and Temperatures. II. Main-sequence K- and M-stars

Tabetha S. Boyajian; Kaspar von Braun; Gerard T. van Belle; Harold A. McAlister; Theo A. ten Brummelaar; Stephen R. Kane; Philip S. Muirhead; Jeremy Jones; Russel J. White; Gail H. Schaefer; David R. Ciardi; Todd J. Henry; Mercedes Lopez-Morales; Stephen T. Ridgway; Douglas R. Gies; Wei-Chun Jao; Bárbara Rojas-Ayala; J. Robert Parks; Laszlo Sturmann; J. Sturmann; Nils H. Turner; C. Farrington; P. J. Goldfinger; David H. Berger

We present interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array. This sample is enhanced by adding a collection of radius measurements published in the literature to form a total data set of 33 K-M-dwarfs with diameters measured to better than 5%. We use these data in combination with the Hipparcos parallax and new measurements of the stars bolometric flux to compute absolute luminosities, linear radii, and effective temperatures for the stars. We develop empirical relations for ~K0 to M4 main-sequence stars that link the stellar temperature, radius, and luminosity to the observed (B – V), (V – R), (V – I), (V – J), (V – H), and (V – K) broadband color index and stellar metallicity [Fe/H]. These relations are valid for metallicities ranging from [Fe/H] = –0.5 to +0.1 dex and are accurate to ~2%, ~5%, and ~4% for temperature, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity-dependent transformations in order to properly convert colors into stellar temperatures, radii, and luminosities. Alternatively, we find no sensitivity to metallicity on relations we construct to the global properties of a star omitting color information, e.g., temperature-radius and temperature-luminosity. Thus, we are able to empirically quantify to what order the stars observed color index is impacted by the stellar iron abundance. In addition to the empirical relations, we also provide a representative look-up table via stellar spectral classifications using this collection of data. Robust examinations of single star temperatures and radii compared to evolutionary model predictions on the luminosity-temperature and luminosity-radius planes reveal that models overestimate the temperatures of stars with surface temperatures <5000 K by ~3%, and underestimate the radii of stars with radii <0.7 R_☉ by ~5%. These conclusions additionally suggest that the models over account for the effects that the stellar metallicity may have on the astrophysical properties of an object. By comparing the interferometrically measured radii for the single star population to those of eclipsing binaries, we find that for a given mass, single and binary star radii are indistinguishable. However, we also find that for a given radius, the literature temperatures for binary stars are systematically lower compared to our interferometrically derived temperatures of single stars by ~200 to 300 K. The nature of this offset is dependent on the validation of binary star temperatures, where bringing all measurements to a uniform and correctly calibrated temperature scale is needed to identify any influence stellar activity may have on the physical properties of a star. Lastly, we present an empirically determined H-R diagram using fundamental properties presented here in combination with those in Boyajian et al. for a total of 74 nearby, main-sequence, A- to M-type stars, and define regions of habitability for the potential existence of sub-stellar mass companions in each system.


The Astrophysical Journal | 2012

Fundamental Properties of Stars Using Asteroseismology from Kepler and CoRoT and Interferometry from the CHARA Array

D. Huber; Michael J. Ireland; Timothy R. Bedding; I. M. Brandão; L. Piau; V. Maestro; T. R. White; H. Bruntt; Luca Casagrande; J. Molenda-Żakowicz; V. Silva Aguirre; S. G. Sousa; Christopher J. Burke; W. J. Chaplin; J. Christensen-Dalsgaard; M. S. Cunha; J. De Ridder; C. Farrington; A. Frasca; R. A. García; R. L. Gilliland; P. J. Goldfinger; S. Hekker; S. D. Kawaler; Hans Kjeldsen; H. McAlister; T. S. Metcalfe; A. Miglio; M. J. P. F. G. Monteiro; Marc H. Pinsonneault

We present results of a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT. By combining interferometric angular diameters, Hipparcos parallaxes, asteroseismic densities, bolometric fluxes, and high-resolution spectroscopy, we derive a full set of near-model-independent fundamental properties for the sample. We first use these properties to test asteroseismic scaling relations for the frequency of maximum power (?max) and the large frequency separation (??). We find excellent agreement within the observational uncertainties, and empirically show that simple estimates of asteroseismic radii for main-sequence stars are accurate to 4%. We furthermore find good agreement of our measured effective temperatures with spectroscopic and photometric estimates with mean deviations for stars between T eff = 4600-6200 K of ?22 ? 32 K (with a scatter of 97?K) and ?58 ? 31 K (with a scatter of 93?K), respectively. Finally, we present a first comparison with evolutionary models, and find differences between observed and theoretical properties for the metal-rich main-sequence star HD?173701. We conclude that the constraints presented in this study will have strong potential for testing stellar model physics, in particular when combined with detailed modeling of individual oscillation frequencies.


The Astrophysical Journal | 2013

Stellar Diameters and Temperatures. III. Main-sequence A, F, G, and K Stars: Additional High-precision Measurements and Empirical Relations

Tabetha S. Boyajian; Kaspar von Braun; Gerard T. van Belle; C. Farrington; Gail H. Schaefer; Jeremy Jones; Russel J. White; Harold A. McAlister; Theo A. ten Brummelaar; Stephen T. Ridgway; Douglas R. Gies; Laszlo Sturmann; J. Sturmann; Nils H. Turner; P. J. Goldfinger; Norm Vargas

Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR_(J)I_(J)JHK), Cousins (R_(C)I_(C)), Kron (R_(K)I_(K)), Sloan (griz), and WISE (W_(3)W_(4)) photometric systems. These relations have an average standard deviation of ~3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T_eff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ~2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.


The Astrophysical Journal | 2012

STELLAR DIAMETERS AND TEMPERATURES. I. MAIN-SEQUENCE A, F, AND G STARS

Tabetha S. Boyajian; Harold A. McAlister; Gerard T. van Belle; Douglas R. Gies; Theo A. ten Brummelaar; Kaspar von Braun; C. Farrington; P. J. Goldfinger; David Patrick O'Brien; J. Robert Parks; N. D. Richardson; Stephen T. Ridgway; Gail H. Schaefer; Laszlo Sturmann; J. Sturmann; Y. Touhami; Nils H. Turner; Russel J. White

We have executed a survey of nearby, main-sequence A-, F-, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars with an average precision of ~1.5%. We present new measures of the bolometric flux, which in turn leads to an empirical determination of the effective temperature for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale model isochrones to constrain the masses and ages of the stars. These results are compared to indirect estimates of these quantities obtained by collecting photometry of the stars and applying them to model atmospheres and evolutionary isochrones. We find that for most cases, the models overestimate the effective temperature by ~1.5%-4% when compared to our directly measured values. The overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the stars surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than ~1.3 M_☉. Additionally, we compare our measurements to a large sample of eclipsing binary stars, and excellent agreement is seen within both data sets. Finally, we present temperature relations with respect to (B – V) and (V – K) colors as well as spectral type, showing that calibration of effective temperatures with errors ~1% is now possible from interferometric angular diameters of stars.


The Astrophysical Journal | 2009

Imaging and Modeling Rapidly Rotating Stars: α Cephei and α Ophiuchi

Ming Zhao; John D. Monnier; Ettore Pedretti; Nathalie D. Thureau; A. Mérand; Theo A. ten Brummelaar; Harold A. McAlister; S. T. Ridgway; Nils H. Turner; J. Sturmann; L. Sturmann; P. J. Goldfinger; C. Farrington

We present submilliarcsecond resolution imaging and modeling of two nearby rapid rotators α Cephei and α Ophiuchi, obtained with the CHARA array—the largest optical/IR interferometer in the world. Incorporating a gravity-darkening model, we are able to determine the inclination, the polar and equatorial radius and temperature, as well as the fractional rotation speed of the two stars with unprecedented precision. The polar and equatorial regions of the two stars have ∼2000 K temperature gradient, causing their apparent temperatures and luminosities to be dependent on their viewing angles. Our modeling allow us to determine the true effective temperatures and luminosities of α Cep and α Oph, permitting us to investigate their true locations on the H-R diagram. These properties in turn give us estimates of the masses and ages of the two stars within a few percent of error using stellar evolution models. Also, based on our gravity-darkening modeling, we propose a new method to estimate the masses of single stars in a more direct way through V sin i measurements and precise geometrical constraint. Lastly, we investigate the degeneracy between the inclination and the gravity-darkening coefficient, which especially affects the modeling of α Oph. Although incorporating V sin i has lifted the degeneracy to some extent, higher-resolution observations are still needed to further constrain the parameters independently.


The Astrophysical Journal | 2011

55 CANCRI: STELLAR ASTROPHYSICAL PARAMETERS, A PLANET IN THE HABITABLE ZONE, AND IMPLICATIONS FOR THE RADIUS OF A TRANSITING SUPER-EARTH

Kaspar von Braun; S. Boyajian Tabetha; Theo A. ten Brummelaar; Stephen R. Kane; Gerard T. van Belle; David R. Ciardi; Sean N. Raymond; Mercedes Lopez-Morales; Harold A. McAlister; Gail H. Schaefer; Stephen T. Ridgway; Laszlo Sturmann; J. Sturmann; Russel J. White; Nils H. Turner; C. Farrington; P. J. Goldfinger

The bright star 55 Cancri is known to host five planets, including a transiting super-Earth. The study presented here yields directly determined values for 55 Cncs stellar astrophysical parameters based on improved interferometry: R = 0.943 ± 0.010 R_☉, T EFF = 5196 ± 24 K. We use isochrone fitting to determine 55 Cncs age to be 10.2 ± 2.5 Gyr, implying a stellar mass of 0.905 ± 0.015 M_☉. Our analysis of the location and extent of the systems habitable zone (HZ; 0.67-1.32 AU) shows that planet f, with period ~260 days and M sin i = 0.155 M_(Jupiter), spends the majority of the duration of its elliptical orbit in the circumstellar HZ. Though planet f is too massive to harbor liquid water on any planetary surface, we elaborate on the potential of alternative low-mass objects in planet fs vicinity: a large moon and a low-mass planet on a dynamically stable orbit within the HZ. Finally, our direct value for 55 Cancris stellar radius allows for a model-independent calculation of the physical diameter of the transiting super-Earth 55 Cnc e (~2.05 ± 0.15 R_⊕), which, depending on the planetary mass assumed, implies a bulk density of 0.76 ρ_⊕ or 1.07 ρ_⊕.


The Astrophysical Journal | 2007

CHARA Array K'-Band Measurements of the Angular Dimensions of Be Star Disks

Douglas R. Gies; William G. Bagnuolo; Ellyn K. Baines; Theo A. ten Brummelaar; C. Farrington; P. J. Goldfinger; Erika D. Grundstrom; Wenjin Huang; Harold A. McAlister; A. Mérand; J. Sturmann; L. Sturmann; Y. Touhami; Nils H. Turner; D. W. Wingert; David H. Berger; M. V. McSwain; Jason Paul Aufdenberg; S. T. Ridgway; Anita L. Cochran; Dan F. Lester; N. C. Sterling; J. E. Bjorkman; K. S. Bjorkman; P. Koubsky

We present the firstK 0 -band,long-baseline interferometric observations of the northern Be starsCas,� Per,� Tau, andDra. The measurements were made with multiple telescope pairs of the CHARA Array interferometer and in every case the observations indicate that the circumstellar disks of the targets are resolved. We fit the interferometric visibilities with predictions from a simple disk model that assumes an isothermal gas in Keplerian rotation. We derive fitsof thefourmodelparameters(diskbasedensity,radialdensityexponent,disknormalinclination,andpositionangle) for each of the targets. The resulting densities are in broad agreement with prior studies of the IR excess flux, and the resultingorientationsgenerallyagreewiththosefrominterferometricHandcontinuumpolarimetricobservations.We find that the angular size of the K 0 diskemissionis smaller thanthatdeterminedfor the Hemission, and weargue that thedifferenceisthe resultof a larger Hopacityandtherelativelylarger neutral hydrogenfractionwithincreasingdisk radius. All the targets are known binaries with faint companions, and we find that companions appear to influence the interferometric visibilities in the cases ofPer andDra. We also present contemporaneous observations of the H� , H� ,andBremissionlines.Syntheticmodelprofilesoftheselinesthatarebasedonthesamediskinclinationandradial densityexponentasderivedfromtheCHARA Arrayobservationsmatchtheobservedemissionlinestrengthif thedisk base density is reduced by � 1.7 dex.


Monthly Notices of the Royal Astronomical Society | 2013

Interferometric radii of bright Kepler stars with the CHARA Array : θ Cygni and 16 Cygni A and B

T. R. White; D. Huber; V. Maestro; Timothy R. Bedding; Michael J. Ireland; Fabien Baron; Tabetha S. Boyajian; Xiao Che; John D. Monnier; Benjamin Pope; Rachael M. Roettenbacher; D. Stello; Peter G. Tuthill; C. Farrington; P. J. Goldfinger; Harold A. McAlister; Gail H. Schaefer; J. Sturmann; L. Sturmann; Theo A. ten Brummelaar; Nils H. Turner

We present the results of long-baseline optical interferom etry observations using the Precision Astronomical Visual Observations (PAVO) beam combiner at the Center for High Angular Resolution Astronomy (CHARA) Array to measure the angular sizes of three bright Kepler stars: θ Cygni, and both components of the binary system 16 Cygni. Supporting infrared observations were made with the Michigan Infrared Combiner (MIRC) and Classic beam combiner, also at the CHARA Array. We find limb-darkened angular diameters of 0.753 ± 0.009 mas for θ Cyg, 0.539 ± 0.007 mas for 16 Cyg A and 0.490 ± 0.006 mas for 16 Cyg B. The Kepler Mission has observed these stars with outstanding photometric precision, revealing the presence of solar-like oscillations. Due to the brightness of these stars the oscillations have exceptiona l signal-to-noise, allowing for detailed study through asteroseismology, and are well constrained by other observations. We have combined our interferometric diameters with Hipparcos parallaxes, spectrophotometric bolometric fluxes and the asteroseismic large frequency sep aration to measure linear radii (θ Cyg: 1.48±0.02 R⊙, 16 Cyg A: 1.22±0.02 R⊙, 16 Cyg B: 1.12±0.02 R⊙), effective temperatures (θ Cyg: 6749±44 K, 16 Cyg A: 5839±42 K, 16 Cyg B: 5809±39 K), and masses (θ Cyg: 1.37±0.04 M⊙, 16 Cyg A: 1.07±0.05 M⊙, 16 Cyg B: 1.05±0.04 M⊙) for each star with very little model dependence. The measurements presented here will provide strong constraints for future stellar modelling efforts.


The Astrophysical Journal | 2011

ASTROPHYSICAL PARAMETERS AND HABITABLE ZONE OF THE EXOPLANET HOSTING STAR GJ 581

Kaspar von Braun; Tabetha S. Boyajian; Stephen R. Kane; Gerard T. van Belle; David R. Ciardi; Mercedes Lopez-Morales; Harold A. McAlister; Todd J. Henry; Wei-Chun Jao; Adric R. Riedel; John P. Subasavage; Gail H. Schaefer; Theo A. ten Brummelaar; Stephen T. Ridgway; Laszlo Sturmann; J. Sturmann; Jude Mazingue; Nils H. Turner; C. Farrington; P. J. Goldfinger; Andrew F. Boden

GJ 581 is an M dwarf host of a multiplanet system. We use long-baseline interferometric measurements from the CHARA Array, coupled with trigonometric parallax information, to directly determine its physical radius to be 0.299 ± 0.010 R_☉. Literature photometry data are used to perform spectral energy distribution fitting in order to determine GJ 581s effective surface temperature T_(EFF) = 3498 ± 56 K and its luminosity L = 0.01205 ± 0.00024 L_☉. From these measurements, we recompute the location and extent of the systems habitable zone and conclude that two of the planets orbiting GJ 581, planets d and g, spend all or part of their orbit within or just on the edge of the habitable zone.


The Astrophysical Journal | 2008

FIRST RESOLVED IMAGES OF THE ECLIPSING AND INTERACTING BINARY β LYRAE

Ming Zhao; Douglas R. Gies; John D. Monnier; Nathalie D. Thureau; Ettore Pedretti; Fabien Baron; A. Mérand; Theo A. ten Brummelaar; H. McAlister; S. T. Ridgway; Nils H. Turner; J. Sturmann; L. Sturmann; C. Farrington; P. J. Goldfinger

We present the first resolved images of the eclipsing binary β Lyrae, obtained with the CHARA Array interferometer and the MIRC combiner in the H band. The images clearly show the mass donor and the thick disk surrounding the mass gainer at all six epochs of observation. The donor is brighter and generally appears elongated in the images, the first direct detection of photospheric tidal distortion due to Roche lobe filling. We also confirm expectations that the disk component is more elongated than the donor and is relatively fainter at this wavelength. Image analysis and model fitting for each epoch were used for calculating the first astrometric orbital solution for β Lyrae, yielding precise values for the orbital inclination and position angle. The derived semimajor axis also allows us to estimate the distance of β Lyrae; however, systematic differences between the models and the images limit the accuracy of our distance estimate to about 15%. To address these issues, we will need a more physical, self-consistent model to account for all epochs as well as the multiwavelength information from the eclipsing light curves.

Collaboration


Dive into the C. Farrington's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Sturmann

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Nils H. Turner

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Sturmann

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. McAlister

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge