Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Frank Bennett is active.

Publication


Featured researches published by C. Frank Bennett.


Molecular Cell | 2010

The Nuclear-Retained Noncoding RNA MALAT1 Regulates Alternative Splicing by Modulating SR Splicing Factor Phosphorylation

Vidisha Tripathi; Jonathan D. Ellis; Zhen Shen; David Y. Song; Qun Pan; Andrew T. Watt; Susan M. Freier; C. Frank Bennett; Alok Sharma; Paula A. Bubulya; Benjamin J. Blencowe; Supriya G. Prasanth; Kannanganattu V. Prasanth

Alternative splicing (AS) of pre-mRNA is utilized by higher eukaryotes to achieve increased transcriptome and proteomic complexity. The serine/arginine (SR) splicing factors regulate tissue- or cell-type-specific AS in a concentration- and phosphorylation-dependent manner. However, the mechanisms that modulate the cellular levels of active SR proteins remain to be elucidated. In the present study, we provide evidence for a role for the long nuclear-retained regulatory RNA (nrRNA), MALAT1 in AS regulation. MALAT1 interacts with SR proteins and influences the distribution of these and other splicing factors in nuclear speckle domains. Depletion of MALAT1 or overexpression of an SR protein changes the AS of a similar set of endogenous pre-mRNAs. Furthermore, MALAT1 regulates cellular levels of phosphorylated forms of SR proteins. Taken together, our results suggest that MALAT1 regulates AS by modulating the levels of active SR proteins. Our results further highlight the role for an nrRNA in the regulation of gene expression.


Annual Review of Pharmacology and Toxicology | 2010

RNA Targeting Therapeutics: Molecular Mechanisms of Antisense Oligonucleotides as a Therapeutic Platform

C. Frank Bennett; Eric E. Swayze

Dramatic advances in understanding of the roles RNA plays in normal health and disease have greatly expanded over the past 10 years and have made it clear that scientists are only beginning to comprehend the biology of RNAs. It is likely that RNA will become an increasingly important target for therapeutic intervention; therefore, it is important to develop strategies for therapeutically modulating RNA function. Antisense oligonucleotides are perhaps the most direct therapeutic strategy to approach RNA. Antisense oligonucleotides are designed to bind to the target RNA by well-characterized Watson-Crick base pairing, and once bound to the target RNA, modulate its function through a variety of postbinding events. This review focuses on the molecular mechanisms by which antisense oligonucleotides can be designed to modulate RNA function in mammalian cells and how synthetic oligonucleotides behave in the body.


Nature Neuroscience | 2011

Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43

Magdalini Polymenidou; Clotilde Lagier-Tourenne; Kasey R. Hutt; Stephanie C. Huelga; Jacqueline Moran; Tiffany Y. Liang; Shuo-Chien Ling; Eveline Sun; Edward Wancewicz; Curt Mazur; Holly Kordasiewicz; Yalda Sedaghat; John Paul Donohue; Lily Shiue; C. Frank Bennett; Gene W. Yeo; Don W. Cleveland

We used cross-linking and immunoprecipitation coupled with high-throughput sequencing to identify binding sites in 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein that, when mutated, causes amyotrophic lateral sclerosis. Massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs were changed (including Fus (Tls), progranulin and other transcripts encoding neurodegenerative disease–associated proteins) and 965 altered splicing events were detected (including in sortilin, the receptor for progranulin) following depletion of TDP-43 from mouse adult brain with antisense oligonucleotides. RNAs whose levels were most depleted by reduction in TDP-43 were derived from genes with very long introns and that encode proteins involved in synaptic activity. Lastly, we found that TDP-43 autoregulates its synthesis, in part by directly binding and enhancing splicing of an intron in the 3′ untranslated region of its own transcript, thereby triggering nonsense-mediated RNA degradation.


Neuron | 2013

RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention

Christopher J. Donnelly; Ping-Wu Zhang; Jacqueline T. Pham; Aaron R. Haeusler; Nipun A. Mistry; Svetlana Vidensky; Elizabeth L. Daley; Erin M. Poth; Benjamin Hoover; Daniel M. Fines; Nicholas J. Maragakis; Pentti J. Tienari; Leonard Petrucelli; Bryan J. Traynor; Jiou Wang; Frank Rigo; C. Frank Bennett; Seth Blackshaw; Rita Sattler; Jeffrey D. Rothstein

A hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neurons from C9ORF72 ALS patients revealed disease-specific (1) intranuclear GGGGCCexp RNA foci, (2) dysregulated gene expression, (3) sequestration of GGGGCCexp RNA binding protein ADARB2, and (4) susceptibility to excitotoxicity. These pathological and pathogenic characteristics were confirmed in ALS brain and were mitigated with antisense oligonucleotide (ASO) therapeutics to the C9ORF72 transcript or repeat expansion despite the presence of repeat-associated non-ATG translation (RAN) products. These data indicate a toxic RNA gain-of-function mechanism as a cause of C9ORF72 ALS and provide candidate antisense therapeutics and candidate human pharmacodynamic markers for therapy.


Journal of Biological Chemistry | 2003

Efficient Reduction of Target RNAs by Small Interfering RNA and RNase H-dependent Antisense Agents A COMPARATIVE ANALYSIS

Timothy A. Vickers; Seongjoon Koo; C. Frank Bennett; Stanley T. Crooke; Nicholas M. Dean; Brenda F. Baker

RNA interference can be considered as an antisense mechanism of action that utilizes a double-stranded RNase to promote hydrolysis of the target RNA. We have performed a comparative study of optimized antisense oligonucleotides designed to work by an RNA interference mechanism to oligonucleotides designed to work by an RNase H-dependent mechanism in human cells. The potency, maximal effectiveness, duration of action, and sequence specificity of optimized RNase H-dependent oligonucleotides and small interfering RNA (siRNA) oligonucleotide duplexes were evaluated and found to be comparable. Effects of base mismatches on activity were determined to be position-dependent for both siRNA oligonucleotides and RNase H-dependent oligonucleotides. In addition, we determined that the activity of both siRNA oligonucleotides and RNase H-dependent oligonucleotides is affected by the secondary structure of the target mRNA. To determine whether positions on target RNA identified as being susceptible for RNase H-mediated degradation would be coincident with siRNA target sites, we evaluated the effectiveness of siRNAs designed to bind the same position on the target mRNA as RNase H-dependent oligonucleotides. Examination of 80 siRNA oligonucleotide duplexes designed to bind to RNA from four distinct human genes revealed that, in general, activity correlated with the activity to RNase H-dependent oligonucleotides designed to the same site, although some exceptions were noted. The one major difference between the two strategies is that RNase H-dependent oligonucleotides were determined to be active when directed against targets in the pre-mRNA, whereas siRNAs were not. These results demonstrate that siRNA oligonucleotide- and RNase H-dependent antisense strategies are both valid strategies for evaluating function of genes in cell-based assays.


Nature | 2011

Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model.

Yimin Hua; Kentaro Sahashi; Frank Rigo; Gene Hung; Guy Horev; C. Frank Bennett; Adrian R. Krainer

Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality; it results from loss-of-function mutations in the survival motor neuron 1 (SMN1) gene. Humans have a paralogue, SMN2, whose exon 7 is predominantly skipped, but the limited amount of functional, full-length SMN protein expressed from SMN2 cannot fully compensate for a lack of SMN1. SMN is important for the biogenesis of spliceosomal small nuclear ribonucleoprotein particles, but downstream splicing targets involved in pathogenesis remain elusive. There is no effective SMA treatment, but SMN restoration in spinal cord motor neurons is thought to be necessary and sufficient. Non-central nervous system (CNS) pathologies, including cardiovascular defects, were recently reported in severe SMA mouse models and patients, reflecting autonomic dysfunction or direct effects in cardiac tissues. Here we compared systemic versus CNS restoration of SMN in a severe mouse model. We used an antisense oligonucleotide (ASO), ASO-10-27, that effectively corrects SMN2 splicing and restores SMN expression in motor neurons after intracerebroventricular injection. Systemic administration of ASO-10-27 to neonates robustly rescued severe SMA mice, much more effectively than intracerebroventricular administration; subcutaneous injections extended the median lifespan by 25 fold. Furthermore, neonatal SMA mice had decreased hepatic Igfals expression, leading to a pronounced reduction in circulating insulin-like growth factor 1 (IGF1), and ASO-10-27 treatment restored IGF1 to normal levels. These results suggest that the liver is important in SMA pathogenesis, underscoring the importance of SMN in peripheral tissues, and demonstrate the efficacy of a promising drug candidate.


Gastroenterology | 1998

A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn's disease☆☆☆

Bruce R. Yacyshyn; Mary Beth Bowen-Yacyshyn; Lawrence D. Jewell; Joseph A. Tami; C. Frank Bennett; Daniel L. Kisner; William R. Shanahan

BACKGROUND & AIMS Intercellular adhesion molecule 1 (ICAM-1) plays an important role in the trafficking and activation of leukocytes and is up-regulated in inflamed mucosa in Crohns disease. ISIS 2302 is an antisense phosphorothioate oligodeoxynucleotide that inhibits ICAM-1 expression. The aim of this study was to obtain preliminary assessment of tolerability, pharmacology, and efficacy of ISIS 2302 in Crohns disease. METHODS Twenty patients with active, steroid-treated Crohns disease were randomized (3:1, ISIS 2302 to placebo) to receive over 26 days 13 intravenous infusions of ISIS 2302 (0.5, 1, or 2 mg/kg) or saline placebo in a double-blinded study. The patients were followed up for 6 months. RESULTS At the end of treatment. 47% (7 of 15) of ISIS 2302-treated and 20% (1 of 5) of the placebo-treated patients were in remission (Crohns Disease Activity Index [CDAI] < 150). At the end of month 6, 5 of these 7 ISIS 2302-treated remitters were still in remission, and a 6th patient had a CDAI of 156. Corticosteroid usage was significantly lower (P = 0.0001) in the ISIS 2302-treated patients. These findings were corroborated by significant increases in beta7 and alpha d bearing CD3+ peripheral blood lymphocytes and by decreases in intestinal mucosal ICAM-1 expression during the treatment period. CONCLUSIONS ISIS 2302 seems to be a well-tolerated and promising therapy for steroid-treated Crohns disease.


Neuron | 2012

Sustained Therapeutic Reversal of Huntington's Disease by Transient Repression of Huntingtin Synthesis

Holly Kordasiewicz; Lisa M. Stanek; Edward Wancewicz; Curt Mazur; Melissa McAlonis; Kimberly A. Pytel; Jonathan W. Artates; Andreas Weiss; Seng H. Cheng; Lamya S. Shihabuddin; Gene Hung; C. Frank Bennett; Don W. Cleveland

The primary cause of Huntingtons disease (HD) is expression of huntingtin with a polyglutamine expansion. Despite an absence of consensus on the mechanism(s) of toxicity, diminishing the synthesis of mutant huntingtin will abate toxicity if delivered to the key affected cells. With antisense oligonucleotides (ASOs) that catalyze RNase H-mediated degradation of huntingtin mRNA, we demonstrate that transient infusion into the cerebrospinal fluid of symptomatic HD mouse models not only delays disease progression but mediates a sustained reversal of disease phenotype that persists longer than the huntingtin knockdown. Reduction of wild-type huntingtin, along with mutant huntingtin, produces the same sustained disease reversal. Similar ASO infusion into nonhuman primates is shown to effectively lower huntingtin in many brain regions targeted by HD pathology. Rather than requiring continuous treatment, our findings establish a therapeutic strategy for sustained HD disease reversal produced by transient ASO-mediated diminution of huntingtin synthesis.


Nature Neuroscience | 2012

Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs

Clotilde Lagier-Tourenne; Magdalini Polymenidou; Kasey R. Hutt; Anthony Q. Vu; Michael Baughn; Stephanie C. Huelga; Kevin M. Clutario; Shuo-Chien Ling; Tiffany Y. Liang; Curt Mazur; Edward Wancewicz; Aneeza S. Kim; Andy Watt; Sue Freier; Geoffrey G. Hicks; John Paul Donohue; Lily Shiue; C. Frank Bennett; John Ravits; Don W. Cleveland; Gene W. Yeo

FUS/TLS (fused in sarcoma/translocated in liposarcoma) and TDP-43 are integrally involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We found that FUS/TLS binds to RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU-binding motif. We identified a sawtooth-like binding pattern, consistent with co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system altered the levels or splicing of >950 mRNAs, most of which are distinct from RNAs dependent on TDP-43. Abundance of only 45 RNAs was reduced after depletion of either TDP-43 or FUS/TLS from mouse brain, but among these were mRNAs that were transcribed from genes with exceptionally long introns and that encode proteins that are essential for neuronal integrity. Expression levels of a subset of these were lowered after TDP-43 or FUS/TLS depletion in stem cell–derived human neurons and in TDP-43 aggregate–containing motor neurons in sporadic ALS, supporting a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS.


Journal of Clinical Investigation | 2006

Antisense oligonucleotide therapy for neurodegenerative disease

Richard A. Smith; Timothy M. Miller; Koji Yamanaka; Brett P. Monia; Thomas P. Condon; Gene Hung; Christian S. Lobsiger; Christopher M. Ward; Melissa McAlonis-Downes; Hongbing Wei; Ed Wancewicz; C. Frank Bennett; Don W. Cleveland

Neurotoxicity from accumulation of misfolded/mutant proteins is thought to drive pathogenesis in neurodegenerative diseases. Since decreasing levels of proteins responsible for such accumulations is likely to ameliorate disease, a therapeutic strategy has been developed to downregulate almost any gene in the CNS. Modified antisense oligonucleotides, continuously infused intraventricularly, have been demonstrated to distribute widely throughout the CNS of rodents and primates, including the regions affected in the major neurodegenerative diseases. Using this route of administration, we found that antisense oligonucleotides to superoxide dismutase 1 (SOD1), one of the most abundant brain proteins, reduced both SOD1 protein and mRNA levels throughout the brain and spinal cord. Treatment initiated near onset significantly slowed disease progression in a model of amyotrophic lateral sclerosis (ALS) caused by a mutation in SOD1. This suggests that direct delivery of antisense oligonucleotides could be an effective, dosage-regulatable means of treating neurodegenerative diseases, including ALS, where appropriate target proteins are known.

Collaboration


Dive into the C. Frank Bennett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian R. Krainer

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge