C.G. Vayenas
University of Patras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C.G. Vayenas.
Journal of Physics: Conference Series | 2015
C.G. Vayenas; D. Grigoriou
Due to the Heisenberg uncertainty principle, gravitational confinement of two- or three-rotating particle systems can lead to microscopic Planckian or sub-Planckian black holes with a size of order their Compton wavelength. Some properties of such states are discussed in terms of the Schwarzschild geodesics of general relativity and compared with properties computed via the combination of special relativity, equivalence principle, Newtons gravitational law and Compton wavelength. It is shown that the generalized uncertainty principle (GUP) provides a satisfactory fit of the Schwarzschild radius and Compton wavelength of such microscopic, particle-like, black holes.
Physica A-statistical Mechanics and Its Applications | 2014
C.G. Vayenas; S. Souentie; A. Fokas
We formulate a Bohr-type rotating particle model for three light particles of the same rest mass, forming a bound rotational state under the influence of their gravitational attraction, in the same way that electrostatic attraction leads to the formation of a bound proton-electron state in the classical Bohr model of the H atom. By using special relativity, the equivalence principle and the de Broglie wavelength equation, we find that when the three rotating particles have the rest masses of neutrinos or antineutrinos then surprisingly the rest mass of the rotating state has the rest mass of the stable baryons, i.e. of the proton and the neutron. This rest mass is due almost exclusively to the kinetic energy of the rotating neutrinos. The results are found to be consistent with the theory of general relativity. Predictions for the properties of these bound rotational states are compared with experimental values.
Physica A-statistical Mechanics and Its Applications | 2013
C.G. Vayenas; S. Souentie; A. Fokas
We formulate a Bohr-type rotating particle model for three light particles of the same rest mass, forming a bound rotational state under the influence of their gravitational attraction, in the same way that electrostatic attraction leads to the formation of a bound proton-electron state in the classical Bohr model of the H atom. By using special relativity, the equivalence principle and the de Broglie wavelength equation, we find that when the three rotating particles have the rest masses of neutrinos or antineutrinos then surprisingly the rest mass of the rotating state has the rest mass of the stable baryons, i.e. of the proton and the neutron. This rest mass is due almost exclusively to the kinetic energy of the rotating neutrinos. The results are found to be consistent with the theory of general relativity. Predictions for the properties of these bound rotational states are compared with experimental values.
Journal of Physics: Conference Series | 2015
C.G. Vayenas; Athanasios S. Fokas; D. Grigoriou
We discuss the predictions of Newtons universal gravitational law when using the gravitational, mg, rather than the rest masses, mo, of the attracting particles. According to the equivalence principle, the gravitational mass equals the inertial mass, mi, and the latter which can be directly computed from special relativity, is an increasing function of the Lorentz factor, γ, and thus of the particle velocity. We consider gravitationally bound rotating composite states, and we show that the ratio of the gravitational force for gravitationally bound rotational states to the force corresponding to low (γ ≈ 1) particle velocities is of the order of (mPl/mo)2 where mpi is the Planck mass (ħc/G)1/2. We also obtain a similar result, within a factor of two, by employing the derivative of the effective potential of the Schwarzschild geodesics of GR. Finally, we show that for certain macroscopic systems, such as the perihelion precession of planets, the predictions of this relativistic Newtonian gravitational law differ again by only a factor of two from the predictions of GR.
Journal of Physics: Conference Series | 2016
C.G. Vayenas; A.S. Fokas; D. Grigoriou
We compute analytically the masses, binding energies and hamiltonians of gravitationally bound Bohr-type states via the rotating relativistic lepton model which utilizes the de Broglie wavelength equation in conjunction with special relativity and Newtons relativistic gravitational law. The latter uses the inertial-gravitational masses, rather than the rest masses, of the rotating particles. The model also accounts for the electrostatic charge- induced dipole interactions between a central charged lepton, which is usually a positron, with the rotating relativistic lepton ring. We use three rotating relativistic neutrinos to model baryons, two rotating relativistic neutrinos to model mesons, and a rotating relativistic electron neutrino - positron (or electron) pair to model the W± bosons. It is found that gravitationally bound ground states comprising three relativistic neutrinos have masses in the baryon mass range (~ 0.9 to 1 GeV/c2), while ground states comprising two neutrinos have masses in the meson mass range (~ 0.4 to 0.8 GeV/c2). It is also found that the rest mass values of quarks are in good agreement with the heaviest neutrino mass value of 0.05 eV/c2 and that the mass of W± bosons (~ 81 GeV/c2) corresponds to the mass of a rotating gravitationally confined e± — ve pair. A generalized expression is also derived for the gravitational potential energy of such relativistic Bohr-type structures.
Physica A-statistical Mechanics and Its Applications | 2013
C.G. Vayenas; S. Souentie; A. Fokas
We formulate a Bohr-type rotating particle model for three light particles of the same rest mass, forming a bound rotational state under the influence of their gravitational attraction, in the same way that electrostatic attraction leads to the formation of a bound proton-electron state in the classical Bohr model of the H atom. By using special relativity, the equivalence principle and the de Broglie wavelength equation, we find that when the three rotating particles have the rest masses of neutrinos or antineutrinos then surprisingly the rest mass of the rotating state has the rest mass of the stable baryons, i.e. of the proton and the neutron. This rest mass is due almost exclusively to the kinetic energy of the rotating neutrinos. The results are found to be consistent with the theory of general relativity. Predictions for the properties of these bound rotational states are compared with experimental values.
ChemElectroChem | 2014
Demetrios Theleritis; Marialena Makri; Stamatios N.-A. Souentie; Angel Caravaca; Alexandros Katsaounis; C.G. Vayenas
Electrochimica Acta | 2011
F.M. Sapountzi; S.C. Divane; M.N. Tsampas; C.G. Vayenas
Surface Science | 2016
I. Kalaitzidou; Marialena Makri; Demetrios Theleritis; Alexandros Katsaounis; C.G. Vayenas
Physica A-statistical Mechanics and Its Applications | 2016
C.G. Vayenas; A.S. Fokas; D. Grigoriou