Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Gruppioni is active.

Publication


Featured researches published by C. Gruppioni.


The Astrophysical Journal | 2011

The Lesser Role of Starbursts in Star Formation at z = 2

G. Rodighiero; E. Daddi; I. Baronchelli; A. Cimatti; A. Renzini; H. Aussel; P. Popesso; D. Lutz; Paola Andreani; S. Berta; A. Cava; D. Elbaz; A. Feltre; A. Fontana; N. M. Förster Schreiber; A. Franceschini; R. Genzel; A. Grazian; C. Gruppioni; O. Ilbert; E. Le Floc'h; G. Magdis; M. Magliocchetti; B. Magnelli; R. Maiolino; H. J. McCracken; R. Nordon; A. Poglitsch; P. Santini; F. Pozzi

Two main modes of star formation are know to control the growth of galaxies: a relatively steady one in disk-like galaxies, defining a tight star formation rate (SFR)-stellar mass sequence, and a starburst mode in outliers to such a sequence which is generally interpreted as driven by merging. Such starburst galaxies are rare but have much higher SFRs, and it is of interest to establish the relative importance of these two modes. PACS/Herschel observations over the whole COSMOS and GOODS-South fields, in conjunction with previous optical/near-IR data, have allowed us to accurately quantify for the first time the relative contribution of the two modes to the global SFR density in the redshift interval 1.5 1000 M ☉ yr-1, off-sequence sources significantly contribute to the SFR density (46% ± 20%). We conclude that merger-driven starbursts play a relatively minor role in the formation of stars in galaxies, whereas they may represent a critical phase toward the quenching of star formation and morphological transformation in galaxies.


Astronomy and Astrophysics | 2011

PACS Evolutionary Probe (PEP) - A Herschel Key Program

D. Lutz; A. Poglitsch; B. Altieri; Paola Andreani; H. Aussel; S. Berta; A. Bongiovanni; D. Brisbin; A. Cava; J. Cepa; A. Cimatti; E. Daddi; H. Dominguez-Sanchez; D. Elbaz; N. M. Förster Schreiber; R. Genzel; A. Grazian; C. Gruppioni; Martin Harwit; G. Magdis; B. Magnelli; R. Maiolino; R. Nordon; A. M. Pérez García; P. Popesso; F. Pozzi; L. Riguccini; G. Rodighiero; A. Saintonge; M. Sánchez Portal

Deep far-infrared photometric surveys studying galaxy evolution and the nature of the cosmic infrared background are a key strength of the Herschel mission. We describe the scientific motivation for the PACS Evolutionary Probe (PEP) guaranteed time key program and its role within the entire set of Herschel surveys, and the field selection that includes popular multiwavelength fields such as GOODS, COSMOS, Lockman Hole, ECDFS, and EGS. We provide an account of the observing strategies and data reduction methods used. An overview of first science results illustrates the potential of PEP in providing calorimetric star formation rates for high-redshift galaxy populations, thus testing and superseding previous extrapolations from other wavelengths, and enabling a wide range of galaxy evolution studies.


The Astrophysical Journal | 2008

Unveiling Obscured Accretion in the Chandra Deep Field-South

F. Fiore; A. Grazian; P. Santini; S. Puccetti; M. Brusa; C. Feruglio; A. Fontana; E. Giallongo; A. Comastri; C. Gruppioni; F. Pozzi; G. Zamorani; C. Vignali

We make use of deep HST, VLT, Spitzer, and Chandra data on the Chandra Deep Field-South to constrain the number of Compton-thick AGNs in this field. We show that sources with high 24 μm-to-optical flux ratios and red colors form a distinct source population, and that their infrared luminosity is dominated by AGN emission. Analysis of the X-ray properties of these extreme sources shows that most of them (80% ± 15%) are indeed likely to be highly obscured, Compton-thick AGNs. The number of infrared-selected, Compton-thick AGNs with 5.8 μm luminosity higher than 1044.2 ergs s−1 turns out to be similar to that of X-ray-selected, unobscured, and moderately obscured AGNs with 2-10 keV luminosity higher than 1043 ergs s−1 in the redshift bin 1.2-2.6. This factor of 2 source population is exactly what is needed to solve the discrepancies between model predictions and X-ray AGN selection.


Astronomy and Astrophysics | 2013

The deepest Herschel-PACS far-infrared survey: number counts and infrared luminosity functions from combined PEP/GOODS-H observations

B. Magnelli; P. Popesso; S. Berta; F. Pozzi; D. Elbaz; D. Lutz; M. Dickinson; B. Altieri; P. Andreani; H. Aussel; M. Béthermin; A. Bongiovanni; J. Cepa; V. Charmandaris; R.-R. Chary; Alessandro Cimatti; E. Daddi; N. M. Förster Schreiber; R. Genzel; C. Gruppioni; Martin Harwit; Ho Seong Hwang; R. J. Ivison; G. Magdis; Roberto Maiolino; E. J. Murphy; R. Nordon; M. Pannella; A. M. Pérez García; A. Poglitsch

We present results from the deepest Herschel-Photodetector Array Camera and Spectrometer (PACS) far-infrared blank field extragalactic survey, obtained by combining observations of the Great Observatories Origins Deep Survey (GOODS) fields from the PACS Evolutionary Probe (PEP) and GOODS-Herschel key programmes. We describe data reduction and theconstruction of images and catalogues. In the deepest parts of the GOODS-S field, the catalogues reach 3σ depths of 0.9, 0.6 and 1.3 mJy at 70, 100 and 160 μm, respectively, and resolve ~75% of the cosmic infrared background at 100 μm and 160 μm into individually detected sources. We use these data to estimate the PACS confusion noise, to derive the PACS number counts down to unprecedented depths, and to determine the infrared luminosity function of galaxies down to L_(IR) = 10^(11) L⊙ at z ~ 1 and L_(IR) = 10^(12) L⊙ at z ~ 2, respectively. For the infrared luminosity function of galaxies, our deep Herschel far-infrared observations are fundamental because they provide more accurate infrared luminosity estimates than those previously obtained from mid-infrared observations. Maps and source catalogues (>3σ) are now publicly released. Combined with the large wealth of multi-wavelength data available for the GOODS fields, these data provide a powerful new tool for studying galaxy evolution over a broad range of redshifts.


Astronomy and Astrophysics | 2010

The first Herschel view of the mass-SFR link in high-z galaxies

G. Rodighiero; A. Cimatti; C. Gruppioni; P. Popesso; Paola Andreani; B. Altieri; H. Aussel; S. Berta; A. Bongiovanni; D. Brisbin; A. Cava; J. Cepa; E. Daddi; H. Dominguez-Sanchez; D. Elbaz; A. Fontana; N. M. Förster Schreiber; A. Franceschini; R. Genzel; A. Grazian; D. Lutz; G. Magdis; M. Magliocchetti; B. Magnelli; R. Maiolino; C. Mancini; R. Nordon; A. M. Pérez García; A. Poglitsch; P. Santini

Aims. We exploit deep observations of the GOODS-N field taken with PACS, the Photodetector Array Camera and Spectrometer, onboard of Herschel, as part of the PACS evolutionary probe guaranteed time (PEP), to study the link between star formation and stellar mass in galaxies to z ∼ 2. Methods. Starting from a stellar mass – selected sample of ∼4500 galaxies with mag4.5 μm < 23.0 (AB), we identify ∼350 objects with a PACS detection at 100 or 160 μ ma nd∼ 1500 with only Spitzer 24 μm counterpart. Stellar masses and total IR luminosities (LIR) are estimated by fitting the spectral energy distributions (SEDs). Results. Consistently with other Herschel results, we find that LIR based only on 24 μm data is overestimated by a median factor ∼ 1. 8a tz ∼ 2, whereas it is underestimated (with our approach) up to a factor ∼ 1. 6a t 0.5 < z < 1.0. We then exploit this calibration to correct LIR based on the MIPS/Spitzer fluxes. These results clearly show how Herschel is fundamental to constrain LIR, and hence the star formation rate (SFR), of high redshift galaxies. Using the galaxies detected with PACS (and/or MIPS), we investigate the existence and evolution of the relations between the SFR, the specific star formation rate (SSFR=SFR/mass) and the stellar mass. Moreover, in order to avoid selection effects, we also repeat this study through a stacking analysis on the PACS images to fully exploit the far-IR information also for the Herschel and Spitzer undetected subsamples. We find that the SSFR-mass relation steepens with redshift, being almost flat at z < 1.0 and reaching a slope of α = −0.50 +0.13 −0.16 at z ∼ 2, at odds with recent works based on radio-stacking analysis at the same redshift. The mean SSFR of galaxies increases with redshift, by a factor ∼15 for


Astronomy and Astrophysics | 2010

Star formation in AGN hosts in GOODS-N

L. Shao; D. Lutz; R. Nordon; R. Maiolino; D. M. Alexander; B. Altieri; Paola Andreani; H. Aussel; F. E. Bauer; S. Berta; A. Bongiovanni; W. N. Brandt; M. Brusa; A. Cava; J. Cepa; A. Cimatti; E. Daddi; H. Dominguez-Sanchez; D. Elbaz; N. M. Förster Schreiber; N. Geis; R. Genzel; A. Grazian; C. Gruppioni; G. Magdis; B. Magnelli; V. Mainieri; A. M. Pérez García; A. Poglitsch; P. Popesso

Sensitive Herschel far-infrared observations can break degeneracies that were inherent to previous studies of star formation in high-z AGN hosts. Combining PACS 100 and 160 μm observations of the GOODS-N field with 2 Ms Chandra data, we detect ∼20% of X-ray AGN individually at >3σ. The host far-infrared luminosity of AGN with L2−10 keV ≈ 10 43 erg s −1 increases with redshift by an order of magnitude from z = 0 to z ∼ 1. In contrast, there is little dependence of far-infrared luminosity on AGN luminosity, for L2−10 keV 1. We do not find a dependence of far-infrared luminosity on X-ray obscuring column, for our sample which is dominated by L2−10 keV < 10 44 erg s −1 AGN. In conjunction with properties of local and luminous high-z AGN, we interpret these results as reflecting the interplay between two paths of AGN/host coevolution. A correlation of AGN luminosity and host star formation is traced locally over a wide range of luminosities and also extends to luminous high-z AGN. This correlation reflects an evolutionary connection, likely via merging. For lower AGN luminosities, star formation is similar to that in non-active massive galaxies and shows little dependence on AGN luminosity. The level of this secular, non-merger driven star formation increasingly dominates over the correlation at increasing redshift.


Astronomy and Astrophysics | 2010

Dissecting the cosmic infra-red background with Herschel/PEP

S. Berta; B. Magnelli; D. Lutz; B. Altieri; H. Aussel; P. Andreani; O. H. Bauer; A. Bongiovanni; A. Cava; J. Cepa; A. Cimatti; E. Daddi; H. Dominguez; D. Elbaz; Helmut Feuchtgruber; N. M. Foerster Schreiber; R. Genzel; C. Gruppioni; R. Katterloher; G. Magdis; R. Maiolino; R. Nordon; A. M. Pérez García; A. Poglitsch; P. Popesso; F. Pozzi; L. Riguccini; G. Rodighiero; A. Saintonge; P. Santini

The constituents of the cosmic IR background (CIB) are studied at its peak wavelengths (100 and 160 μm) by exploiting Herschel/PACS observations of the GOODS-N, Lockman Hole, and COSMOS fields in the PACS evolutionary probe (PEP) guaranteed-time survey. The GOODS-N data reach 3σ depths of ∼3.0 mJy at 100 μ ma nd∼5.7 mJy at 160 μm. At these levels, source densities are 40 and 18 beams/source, respectively, thus hitting the confusion limit at 160 μm. Differential number counts extend from a few mJy up to 100-200 mJy, and are approximated as a double power law, with the break lying between 5 and 10 mJy. The available ancillary information allows us to split number counts into redshift bins. At z ≤ 0.5 we isolate a class of luminous sources (LIR ∼ 10 11 L� ), whose SEDs resemble late-spiral galaxies, peaking at ∼130 μm restframe and significantly colder than what is expected on the basis of pre-Herschel models. By integrating number counts over the whole covered flux range, we obtain a surface brightness of 6.36± 1.67 and 6.58± 1.62 [nW m −2 sr −1 ] at 100 and 160 μm, resolving ∼45% and ∼52% of the CIB, respectively. When stacking 24 μm sources, the inferred CIB lies within 1.1σ and 0.5σ from direct measurements in the two bands, and fractions increase to 50% and 75%. Most of this resolved CIB fraction was radiated at z ≤ 1.0, with 160 μm sources found at higher redshift than 100 μm ones.


Monthly Notices of the Royal Astronomical Society | 2000

The European Large Area ISO Survey – II. Mid‐infrared extragalactic source counts

S. Serjeant; Seb Oliver; Michael Rowan-Robinson; H. Crockett; Vasilis Missoulis; T. J. Sumner; C. Gruppioni; Robert G. Mann; N. Eaton; D. Elbaz; David L. Clements; A. C. Baker; A. Efstathiou; Catherine J. Cesarsky; L. Danese; A. Franceschini; Reinhardt Genzel; A. Lawrence; Dietrich Lemke; Richard G. McMahon; George K. Miley; Jean-Loup Puget; Brigitte Rocca-Volmerange

We present preliminary source counts at 6.7um and 15um from the Preliminary Analysis of the European Large Area ISO survey, with limiting flux densities of \~2mJy at 15um&~1mJy at 6.7um. We separate the stellar contribution from the extragalactic using identifications with APM sources made with the likelihood ratio technique. We quantify the completeness&reliability of our source extraction using (a) repeated observations over small areas, (b) cross-IDs with stars of known spectral type, (c) detections of the PSF wings around bright sources, (d) comparison with independent algorithms. Flux calibration at 15um was performed using stellar IDs; the calibration does not agree with the pre-flight estimates, probably due to effects of detector hysteresis and photometric aperture correction. The 6.7um extragalactic counts are broadly reproduced in the Pearson&Rowan-Robinson model, but the Franceschini et al. (1997) model underpredicts the observed source density by ~0.5-1 dex, though the photometry at 6.7um is still preliminary. At 15um the extragalactic counts are in excellent agreement with the predictions of the Pearson&Rowan-Robinson (1996), Franceschini et al. (1994), Guiderdoni et al. (1997) and the evolving models of Xu et al. (1998), over 7 orders of magnitude in 15um flux density. The counts agree with other estimates from the ISOCAM instrument at overlapping flux densities (Elbaz et al. 1999), provided a consistent flux calibration is used. Luminosity evolution at a rate of (1+z)^3, incorporating mid-IR spectral features, provides a better fit to the 15um differential counts than (1+z)^4 density evolution. No-evolution models are excluded, and implying that below around 10mJy at 15um the source counts become dominated by an evolving cosmological population of dust-shrouded starbursts and/or active galaxies.


Monthly Notices of the Royal Astronomical Society | 1999

A deep VLA survey at 20 cm of the ISO ELAIS survey regions

P. Ciliegi; Richard McMahon; George K. Miley; C. Gruppioni; M. Rowan-Robinson; Catherine J. Cesarsky; L. Danese; Alberto Franceschini; R. Genzel; A. Lawrence; Dietrich Lemke; S. J. Oliver; Jean-Loup Puget; B. Rocca-Volmerange

We have used the Very Large Array (VLA) in C configuration to carry out a sensitive 20-cm radio survey of regions of sky that have been surveyed in the far-infrared (FIR) over the wavelength range 5--200 μm with ISO (Infrared Space Observatory) as part of the European Large-Area ISO Survey (ELAIS). As usual in surveys based on a relatively small number of overlapping VLA pointings, the flux limit varies over the area surveyed: from a 5σ limit of 0.135 mJy over an area of 0.12 deg2 to 1.15 mJy or better over the whole region covered of 4.22 deg2. In this paper we present the complete radio catalogue of 867 sources, 428 of which form a complete sample in the flux range 0.2--1.0 mJy. These regions of sky have previously been surveyed to shallower flux limits at 20 cm with the VLA as part of the VLA D configuration NVSS (full width at half-maximum, FWHM=45 arcsec) and VLA B configuration FIRST (FWHM=5 arcsec) surveys. Our whole survey has a nominal 5σ flux limit a factor of 2 below that of the NVSS; 3.4 deg2 of the survey reaches the nominal flux limit of the FIRST survey and 1.5 deg2 reaches 0.25 mJy, a factor of 4 below the nominal FIRST survey limit. In addition, our survey is at a resolution intermediate between the two surveys and thus is well suited for a comparison of the reliability and resolution-dependent surface brightness effects that affect interferometric radio surveys. We have carried out a detailed comparison of our own survey and these two independent surveys in order to assess the reliability and completeness of each. Considering the whole sample, we found that to the 5σ nominal limits of 2.3 and 1.0 mJy, respectively, the NVSS and FIRST surveys have a completeness of 96+2-3 and 89+2-3 per cent and a reliability of 99+1-2 and 94+2-2 per cent.


Astronomy and Astrophysics | 2013

Panchromatic spectral energy distributions of Herschel sources

S. Berta; D. Lutz; P. Santini; Stijn Wuyts; D. Rosario; D. Brisbin; A. Cooray; A. Franceschini; C. Gruppioni; E. Hatziminaoglou; Ho Seong Hwang; B. Magnelli; R. Nordon; S. J. Oliver; M. J. Page; P. Popesso; L. Pozzetti; F. Pozzi; L. Riguccini; G. Rodighiero; I. G. Roseboom; D. Scott; M. Symeonidis; I. Valtchanov; M. Viero; L. Wang

Combining far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields, it is possible to sample the 8–500 μm spectral energy distributions (SEDs) of galaxies with at least 7–10 bands. Extending to the UV, optical, and near-infrared, the number of bands increases up to 43. We reproduce the distribution of galaxies in a carefully selected restframe ten colors space, based on this rich data-set, using a superposition of multivariate Gaussian modes. We use this model to classify galaxies and build median SEDs of each class, which are then fitted with a modified version of the magphys code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an active galactic nucleus (AGN). The color distribution of galaxies in each of the considered fields can be well described with the combination of 6–9 classes, spanning a large range of far- to near-infrared luminosity ratios, as well as different strength of the AGN contribution to bolometric luminosities. The defined Gaussian grouping is used to identify rare or odd sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z ~ 1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eightother popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10–20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of SED templates. Finally, the library is used to classify 24 μm detected sources in PEP GOODS fields on the basis of AGN content, L(60)/L(100) color and L(160)/L(1.6) luminosity ratio. AGN appear to be distributed in the stellar mass (M_∗) vs. star formation rate (SFR) space along with all other galaxies, regardless of the amount of infrared luminosity they are powering, with the tendency to lie on the high SFR side of the “main sequence”. The incidence of warmer star-forming sources grows for objects with higher specific star formation rates (sSFR), and they tend to populate the “off-sequence” region of the M_∗ − SFR − z space.

Collaboration


Dive into the C. Gruppioni's collaboration.

Top Co-Authors

Avatar

F. Pozzi

University of Bologna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Franceschini

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge