Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. H. Ling is active.

Publication


Featured researches published by C. H. Ling.


Nature | 2011

Unbound or distant planetary mass population detected by gravitational microlensing

T. Sumi; K. Kamiya; D. P. Bennett; I. A. Bond; F. Abe; C. S. Botzler; A. Fukui; K. Furusawa; J. B. Hearnshaw; Y. Itow; P. M. Kilmartin; A. Korpela; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; N. Miyake; M. Motomura; Y. Muraki; M. Nagaya; S. Nakamura; K. Ohnishi; T. Okumura; Y. C. Perrott; N. J. Rattenbury; To. Saito; T. Sako; D. J. Sullivan; W. L. Sweatman; P. J. Tristram

Since 1995, more than 500 exoplanets have been detected using different techniques, of which 12 were detected with gravitational microlensing. Most of these are gravitationally bound to their host stars. There is some evidence of free-floating planetary-mass objects in young star-forming regions, but these objects are limited to massive objects of 3 to 15 Jupiter masses with large uncertainties in photometric mass estimates and their abundance. Here, we report the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice () as common as main-sequence stars, based on two years of gravitational microlensing survey observations towards the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However, a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. An abrupt change in the mass function at about one Jupiter mass favours the idea that their formation process is different from that of stars and brown dwarfs. They may have formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits.


The Astrophysical Journal | 2008

A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192

D. P. Bennett; I. A. Bond; A. Udalski; T. Sumi; F. Abe; A. Fukui; K. Furusawa; J. B. Hearnshaw; S. Holderness; Y. Itow; K. Kamiya; A. Korpela; P. M. Kilmartin; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; N. Miyake; Y. Muraki; M. Nagaya; Teppei Okumura; K. Ohnishi; Y. C. Perrott; N. J. Rattenbury; T. Sako; To. Saito; Shuji Sato; L. Skuljan; D. J. Sullivan; W. L. Sweatman

We report the detection of an extrasolar planet of mass ratio q~2×10-4 in microlensing event MOA-2007-BLG-192. The best-fit microlensing model shows both the microlensing parallax and finite source effects, and these can be combined to obtain the lens masses of M=0.060+0.028-0.021 Msolar for the primary and m=3.3+4.9-1.6 M? for the planet. However, the observational coverage of the planetary deviation is sparse and incomplete, and the radius of the source was estimated without the benefit of a source star color measurement. As a result, the 2 ? limits on the mass ratio and finite source measurements are weak. Nevertheless, the microlensing parallax signal clearly favors a substellar mass planetary host, and the measurement of finite source effects in the light curve supports this conclusion. Adaptive optics images taken with the Very Large Telescope (VLT) NACO instrument are consistent with a lens star that is either a brown dwarf or a star at the bottom of the main sequence. Follow-up VLT and/or Hubble Space Telescope (HST) observations will either confirm that the primary is a brown dwarf or detect the low-mass lens star and enable a precise determination of its mass. In either case, the lens star, MOA-2007-BLG-192L, is the lowest mass primary known to have a companion with a planetary mass ratio, and the planet, MOA-2007-BLG-192Lb, is probably the lowest mass exoplanet found to date, aside from the lowest mass pulsar planet.


The Astrophysical Journal | 2012

MOA-2011-BLG-293Lb: A TEST OF PURE SURVEY MICROLENSING PLANET DETECTIONS

J. C. Yee; Y. Shvartzvald; Avishay Gal-Yam; I. A. Bond; A. Udalski; S. Kozłowski; C. Han; A. Gould; J. Skowron; D. Suzuki; F. Abe; D. P. Bennett; C. S. Botzler; P. Chote; M. Freeman; A. Fukui; K. Furusawa; Y. Itow; S. Kobara; C. H. Ling; K. Masuda; Y. Matsubara; N. Miyake; Y. Muraki; K. Ohmori; K. Ohnishi; N. J. Rattenbury; To. Saito; D. J. Sullivan; T. Sumi

Mathematical and Physical Sciences: 1st Place (The Ohio State University Edward F. Hayes Graduate Research Forum)


The Astrophysical Journal | 2009

The Extreme Microlensing Event OGLE-2007-BLG-224: Terrestrial Parallax Observation of a Thick-Disk Brown Dwarf

A. Gould; A. Udalski; Berto Monard; K. Horne; Subo Dong; N. Miyake; Kailash C. Sahu; D. P. Bennett; Ł. Wyrzykowski; I. Soszyński; M. K. Szymański; M. Kubiak; G. Pietrzyński; O. Szewczyk; K. Ulaczyk; W. Allen; G. W. Christie; D. L. DePoy; B. S. Gaudi; Cheongho Han; C.-U. Lee; J. McCormick; T. Natusch; B.-G. Park; Richard W. Pogge; A. Allan; M. F. Bode; D. M. Bramich; M. J. Burgdorf; M. Dominik

Parallax is the most fundamental technique for measuring distances to astronomical objects. Although terrestrial parallax was pioneered over 2000 years ago by Hipparchus (ca. 140 B.C.E.) to measure the distance to the Moon, the baseline of the Earth is so small that terrestrial parallax can generally only be applied to objects in the Solar System. However, there exists a class of extreme gravitational microlensing events in which the effects of terrestrial parallax can be readily detected and so permit the measurement of the distance, mass, and transverse velocity of the lens. Here we report observations of the first such extreme microlensing event OGLE-2007-BLG-224, from which we infer that the lens is a brown dwarf of mass M = 0.056 ± 0.004 M ☉, with a distance of 525 ± 40 pc and a transverse velocity of 113 ± 21 km s–1. The velocity places the lens in the thick disk, making this the lowest-mass thick-disk brown dwarf detected so far. Follow-up observations may allow one to observe the light from the brown dwarf itself, thus serving as an important constraint for evolutionary models of these objects and potentially opening a new window on substellar objects. The low a priori probability of detecting a thick-disk brown dwarf in this event, when combined with additional evidence from other observations, suggests that old substellar objects may be more common than previously assumed.


The Astrophysical Journal | 2009

EXTREME MAGNIFICATION MICROLENSING EVENT OGLE-2008-BLG-279: STRONG LIMITS ON PLANETARY COMPANIONS TO THE LENS STAR

J. C. Yee; A. Udalski; T. Sumi; Subo Dong; S. Kozłowski; Jonathan C. Bird; Andrew A. Cole; D. Higgins; J. McCormick; L. A. G. Monard; David Polishook; Avi Shporer; Oded Spector; M. K. Szymański; M. Kubiak; G. Pietrzyński; I. Soszyński; O. Szewczyk; K. Ulaczyk; Ł. Wyrzykowski; R. Poleski; W. Allen; M. Bos; G. W. Christie; D. L. DePoy; Jason D. Eastman; B. S. Gaudi; A. Gould; Cheongho Han; Shai Kaspi

We analyze the extreme high-magnification microlensing event OGLE-2008-BLG-279, which peaked at a maximum magnification of A ~ 1600 on 2008 May 30. The peak of this event exhibits both finite-source effects and terrestrial parallax, from which we determine the mass of the lens, Ml = 0.64 ? 0.10 M ?, and its distance, Dl = 4.0 ? 0.6 kpc. We rule out Jupiter-mass planetary companions to the lens star for projected separations in the range 0.5-20 AU. More generally, we find that this event was sensitive to planets with masses as small as with projected separations near the Einstein ring (~3 AU).


Science | 2014

A terrestrial planet in a ~1-AU orbit around one member of a ∼15-AU binary

A. Gould; A. Udalski; I. G. Shin; I. Porritt; J. Skowron; C. Han; J. C. Yee; S. Kozłowski; J. Y. Choi; R. Poleski; Ł. Wyrzykowski; K. Ulaczyk; P. Pietrukowicz; P. Mróz; M. K. Szymański; M. Kubiak; I. Soszyński; G. Pietrzyński; B. S. Gaudi; G. W. Christie; J. Drummond; J. McCormick; T. Natusch; H. Ngan; T. G. Tan; M. D. Albrow; D. L. DePoy; K.-H. Hwang; Y. K. Jung; C.-U. Lee

Impolite planet ignores hosts partner Many known exoplanets (planets outside our own solar system) are hosted by binary systems that contain two stars. These planets normally circle around both of their stars. Using microlensing data taken with a worldwide network of telescopes, Gould et al. found a planet twice the mass of Earth that circles just one of a pair of stars. The same approach has the potential to uncover other similar star systems and help to illuminate some of the mysteries of planet formation. Science, this issue p. 46 Microlensing observations reveal an exoplanet twice the mass of Earth circling just one member of a binary system. Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth’s) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet’s temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution.


The Astrophysical Journal | 2016

The Exoplanet Mass-Ratio Function from the MOA-II Survey: Discovery of a Break and Likely Peak at a Neptune Mass

D. Suzuki; D. P. Bennett; T. Sumi; I. A. Bond; Leslie A. Rogers; F. Abe; Y. Asakura; A. Bhattacharya; M. Donachie; M. Freeman; A. Fukui; Y. Hirao; Y. Itow; N. Koshimoto; M. C. A. Li; C. H. Ling; K. Masuda; Y. Matsubara; Y. Muraki; K. Onishi; H. Oyokawa; N. J. Rattenbury; T. Saito; A. Sharan; Hiroshi Shibai; D. J. Sullivan; P. J. Tristram; A. Yonehara

We report the results of the statistical analysis of planetary signals discovered in MOA-II microlensing survey alert system events from 2007 to 2012. Laboratory for Exoplanets and Stellar Astrophysics, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA Department of Physics, University of Notre Dame, Notre Dame, IN 46556, USA Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail Centre, Auckland, New Zealand Department of Astronomy & Astrophysics, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand Okayama Astrophysical Observatory, National Astronomical Observatory, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232, Japan Nagano National College of Technology, Nagano 381-8550, Japan Tokyo Metropolitan College of Industrial Technology, Tokyo 116-8523, Japan School of Chemical and Physical Sciences, Victoria University, Wellington, New Zealand Mt. John University Observatory, P.O. Box 56, Lake Tekapo 8770, New Zealand Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan Sagan Fellow, Department of Earth and Planetary Science, University of California at Berkeley, 501 Campbell Hall #3411, Berkeley, CA 94720, USA ar X iv :1 61 2. 03 93 9v 1 [ as tr oph .E P] 1 2 D ec 2 01 6


The Astrophysical Journal | 2015

OGLE-2013-BLG-0102LA,B: MICROLENSING BINARY WITH COMPONENTS AT STAR/BROWN DWARF AND BROWN DWARF/PLANET BOUNDARIES

Y. K. Jung; A. Udalski; T. Sumi; C. Han; A. Gould; J. Skowron; S. Kozłowski; R. Poleski; Ł. Wyrzykowski; M. K. Szymański; G. Pietrzyński; I. Soszyński; K. Ulaczyk; P. Pietrukowicz; P. Mróz; M. Kubiak; F. Abe; D. P. Bennett; I. A. Bond; C. S. Botzler; M. Freeman; A. Fukui; D. Fukunaga; Y. Itow; N. Koshimoto; P. Larsen; C. H. Ling; K. Masuda; Y. Matsubara; Y. Muraki

We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification


Astronomy and Astrophysics | 2009

Mass measurement of a single unseen star and planetary detection efficiency for OGLE 2007-BLG-050

V. Batista; Subo Dong; A. Gould; J. P. Beaulieu; A. Cassan; G. W. Christie; Cheongho Han; A. Udalski; W. Allen; D. L. DePoy; Avishay Gal-Yam; B. S. Gaudi; Benjamin D. Johnson; Shai Kaspi; C.-U. Lee; D. Maoz; J. McCormick; I. Mcgreer; Berto Monard; T. Natusch; Eran O. Ofek; B.-G. Park; Richard W. Pogge; David Polishook; Avi Shporer; M. D. Albrow; D. P. Bennett; S. Brillant; M. F. Bode; D. M. Bramich

A_{\rm max}\sim 1.5


The Astrophysical Journal | 2016

Spitzer Observations of OGLE-2015-BLG-1212 Reveal a New Path toward Breaking Strong Microlens Degeneracies

V. Bozza; Y. Shvartzvald; A. Udalski; S. Calchi Novati; I. A. Bond; C. Han; M. Hundertmark; R. Poleski; M. Pawlak; M. K. Szymański; J. Skowron; P. Mróz; S. Kozłowski; Ł. Wyrzykowski; P. Pietrukowicz; I. Soszyński; K. Ulaczyk; C. A. Beichman; G. Bryden; Sean J. Carey; M. Fausnaugh; B. S. Gaudi; A. Gould; C. B. Henderson; Richard W. Pogge; B. Wibking; J. C. Yee; W. Zhu; F. Abe; Y. Asakura

. It is found that the event was produced by a binary lens with a mass ratio between the components of

Collaboration


Dive into the C. H. Ling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. P. Bennett

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge