Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Hagmann is active.

Publication


Featured researches published by C. Hagmann.


Physical Review Letters | 2010

SQUID-Based Microwave Cavity Search for Dark-Matter Axions

S.J. Asztalos; G. Carosi; C. Hagmann; D. Kinion; K. van Bibber; M. Hotz; L.J. Rosenberg; G. Rybka; J. Hoskins; Jungseek Hwang; P. Sikivie; D. B. Tanner; Richard Bradley; John Clarke

Axions in the microeV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3.3 microeV and 3.53 microeV and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.


Physical Review D | 2006

High resolution search for dark-matter axions

L. D. Duffy; P. Sikivie; D. B. Tanner; Stephen John Asztalos; C. Hagmann; D. Kinion; L.J. Rosenberg; K. van Bibber; D. B. Yu; Richard Bradley

We have performed a high resolution search for galactic halo axions in cold flows using a microwave cavity detector. The analysis procedure and other details of this search are described. No axion signal was found in the mass range 1.98-2.17 micro-eV. We place upper limits on the density of axions in local discrete flows based on this result.


Journal of Applied Physics | 2006

Detecting clandestine material with nuclear resonance fluorescence

Jason Pruet; Dennis Paul McNabb; C. Hagmann; Frederic V. Hartemann; C. P. J. Barty

We study the performance of a class of interrogation systems that exploit nuclear resonance fluorescence (NRF) to detect specific isotopes. In these systems the presence of a particular nuclide is inferred by observing the preferential attenuation of photons that strongly excite an electromagnetic transition in that nuclide. Estimates for the false positive/negative error rates, radiological dose, and detection sensitivity associated with discovering clandestine material embedded in cargo are presented. The relation between performance of the detection system and properties of the beam of interrogating photons is also considered. Bright gamma-ray sources with fine energy and angular resolution, such as those based on Thomson upscattering of laser light, are found to be associated with uniquely low radiological dose, scan times, and error rates. For this reason a consideration of NRF-based interrogation systems may provide impetus for efforts in light source development for applications related to national security and industry.


Physical Review D | 2004

An Improved RF Cavity Search for Halo Axions

Stephen John Asztalos; Richard Bradley; L. D. Duffy; C. Hagmann; D. Kinion; D. M. Moltz; L.J. Rosenberg; P. Sikivie; W. Stoeffl; N. S. Sullivan; D. B. Tanner; K. van Bibber; D. B. Yu

The axion is a hypothetical elementary particle and cold dark matter candidate. In this RF cavity experiment, halo axions entering a resonant cavity immersed in a static magnetic field convert into microwave photons, with the resulting photons detected by a low-noise receiver. The ADMX Collaboration presents new limits on the axion-to-photon coupling and local axion dark matter halo mass density from a RF cavity axion search in the axion mass range 1.9-2.3 {micro}eV, broadening the search range to 1.9-3.3 {micro}eV. In addition, we report first results from an improved analysis technique.


Physical Review Letters | 1998

Results from a High-Sensitivity Search for Cosmic Axions

C. Hagmann; D. Kinion; W. Stoeffl; K. van Bibber; E. Daw; H. Peng; L. Rosenberg; J. Laveigne; P. Sikivie; N. S. Sullivan; D. B. Tanner; F.A. Nezrick; Michael S. Turner; D. M. Moltz; J. Powell; N.A. Golubev

We report the first results of a high-sensitivity


Physical Review D | 1998

Studies of the motion and decay of axion walls bounded by strings

Sanghyeon Chang; C. Hagmann; P. Sikivie

(\ensuremath{\sim}{10}^{\ensuremath{-}23}\mathrm{W})


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2007

Experimental Results from an Antineutrino Detector for Cooperative Monitoring of Nuclear Reactors

N.S. Bowden; A. Bernstein; Matthew S. Allen; Jim Brennan; Mark F. Cunningham; John K. Estrada; C.M.R. Greaves; C. Hagmann; J.C. Lund; Wondwosen Mengesha; T.D. Weinbeck; Celeste Winant

search for light halo axions through their conversion to microwave photons. At the 90% confidence level, we exclude a Kim-Shifman-Vainshtein-Zakharov axion of mass


The Astrophysical Journal | 2002

Experimental Constraints on the Axion Dark Matter Halo Density

S.J. Asztalos; E. Daw; H. Peng; L. Rosenberg; D. B. Yu; C. Hagmann; D. Kinion; W. Stoeffl; K. van Bibber; Joseph Donald Laveigne; P. Sikivie; N. S. Sullivan; D. B. Tanner; F.A. Nezrick; D. M. Moltz

2.9\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}


Physical Review D | 2001

Axion radiation from strings

C. Hagmann; Sanghyeon Chang; P. Sikivie

to


Physical Review Letters | 2010

Search for Hidden Sector Photons with the ADMX Detector

A. Wagner; G. Rybka; M. Hotz; L.J. Rosenberg; S.J. Asztalos; G. Carosi; C. Hagmann; D. Kinion; K. van Bibber; J. Hoskins; C. Martin; P. Sikivie; D. B. Tanner; Richard Bradley; John E. Hughes Clarke

3.3\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}\mathrm{eV}

Collaboration


Dive into the C. Hagmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Kinion

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

K. van Bibber

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L.J. Rosenberg

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard Bradley

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar

S.J. Asztalos

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

G. Carosi

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. Rybka

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge