C. Halliday
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Halliday.
Astronomy and Astrophysics | 2008
A. Cimatti; P. Cassata; L. Pozzetti; J. Kurk; M. Mignoli; A. Renzini; Emanuele Daddi; M. Bolzonella; M. Brusa; G. Rodighiero; M. Dickinson; A. Franceschini; G. Zamorani; S. Berta; P. Rosati; C. Halliday
Aims. The aim of this work is to investigate the physical, structur al and evolutionary properties of old, passive galaxies at z> 1.4 and to place new constraints on massive galaxy formation and evolution. Methods. We combine ultradeep optical spectroscopy from the GMASS project (Galaxy Mass Assembly ultradeep Spectroscopic Survey) with GOODS multi-band (optical to mid‐infrared) photometry and HST imaging to study a sample of spectroscopically identified passive galaxies at 1.39 2. No X-ray emission was found neither from individual galaxies nor from a stacking analysis of the sample. Only one galaxy shows a marginal detection at 24� m. These galaxies have morphologies that are predominantly compact and spheroidal. However, their sizes (Re. 1 kpc) are much smaller than those of spheroids in the present‐day Universe. Their stellar mass surface densities are consequently hig her by≈1 dex if compared to spheroids at z≈ 0 with the same mass. Their rest-frame B-band surface brightness scales with the effective radius, but the offset with respect to the surface brightness of the local Korme ndy relation is too large to be explained by simple passive evolution. At z≈ 1, a larger fraction of passive galaxies follows the z≈ 0 size ‐ mass relation. Superdense relics with Re≈ 1 kpc are extremely rare at z≈ 0 with respect to z> 1, and absent if Re 2. The results are compared with theoretical models and the main implications discussed in the framework of massive galaxy formation and evolution.
The Astrophysical Journal | 2006
Bianca M. Poggianti; Anja von der Linden; Gabriella De Lucia; Vandana Desai; Luc Simard; C. Halliday; Alfonso Aragon-Salamanca; Richard G. Bower; Jesus Varela; Philip Best; Douglas Clowe; Julianne J. Dalcanton; Pascale Jablonka; B. Milvang-Jensen; R. Pello; Gregory Rudnick; R. P. Saglia; Simon D. M. White; Dennis Zaritsky
We study how the proportion of star-forming galaxies evolves between z ¼ 0:8 and 0 as a function of galaxy environment,usingtheOiilineinemissionasasignatureofongoingstarformation.Our high-zdatasetcomprises16 clusters, 10 groups, and another 250 galaxies in poorer groups and the field at z ¼ 0:4 0:8 from the ESO Distant Cluster Survey, plus another 9 massive clusters at similar redshifts. As a local comparison, we use galaxy systems selected from the Sloan Digital Sky Survey (SDSS) at 0:04 < z < 0:08. At high z most systems follow a broad anticorrelation between the fraction of star-forming galaxies and the system velocity dispersion. At face value, this suggests that at z ¼ 0:4 0:8 the mass of the system largely determines the proportion of galaxies with ongoing star formation. At these redshifts the strength of star formation (as measured by the O ii equivalent width) in star-forming galaxies is also found to vary systematically with environment. SDSS clusters have much lower fractions of starforming galaxies than clusters at z ¼ 0:4 0:8 and, in contrast with the distant clusters, show a plateau for velocity dispersions � 550kms � 1 ,where thefraction ofgalaxieswithOiiemission doesnotvarysystematicallywithvelocity dispersion. We quantify the evolution of the proportion of star-forming galaxies as a function of the system velocity dispersion and find that it is strongest in intermediate-mass systems (� � 500 600 km s � 1 at z ¼ 0). To understandtheoriginoftheobservedtrends,weusethePress-Schechter formalismandtheMillenniumSimulationandshow thatgalaxystarformationhistoriesmaybecloselyrelatedtothegrowthhistoryofclustersandgroups.Ifthescenariowe propose is roughly correct, the link between galaxy properties and environment is extremely simple to predict purely from a knowledge of the growth of dark matter structures. Subject headings: cosmology: observations — galaxies: clusters: general — galaxies: evolution — galaxies: fundamental parameters — galaxies: stellar content
The Astrophysical Journal | 2011
M. Salvato; O. Ilbert; Guenther Hasinger; F. Civano; G. Zamorani; M. Brusa; M. Elvis; C. Vignali; H. Aussel; A. Comastri; F. Fiore; E. Le Floc'h; V. Mainieri; S. Bardelli; M. Bolzonella; A. Bongiorno; P. Capak; Karina Caputi; N. Cappelluti; C. M. Carollo; T. Contini; B. Garilli; A. Iovino; S. Fotopoulou; Antonella Fruscione; R. Gilli; C. Halliday; Jean-Paul Kneib; Y. Kakazu; J. Kartaltepe
In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy σ_(Δz/(1+z(spec))~0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg^2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H_(AB) = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.
Astronomy and Astrophysics | 2010
M. Bolzonella; K. Kovac; L. Pozzetti; E. Zucca; O. Cucciati; S. J. Lilly; Y. Peng; A. Iovino; G. Zamorani; D. Vergani; L. Tasca; F. Lamareille; P. Oesch; Karina Caputi; P. Kampczyk; S. Bardelli; C. Maier; U. Abbas; C. Knobel; M. Scodeggio; C. M. Carollo; T. Contini; Jean-Paul Kneib; O. Le Fèvre; V. Mainieri; A. Renzini; A. Bongiorno; G. Coppa; S. de la Torre; L. de Ravel
We study the impact of the environment on the evolution of galaxies in the zCOSMOS 10 k sample in the redshift range 0.1 ≤ z ≤ 1.0 over an area of ~1.5 deg^2. The considered sample of secure spectroscopic redshifts contains about 8500 galaxies, with their stellar masses estimated by SED fitting of the multiwavelength optical to near-infrared (NIR) photometry. The evolution of the galaxy stellar mass function (GSMF) in high and low density regions provides a tool to study the mass assembly evolution in different environments; moreover, the contributions to the GSMF from different galaxy types, as defined by their SEDs and their morphologies, can be quantified. At redshift z ~ 1, the GSMF is only slightly dependent on environment, but at lower redshifts the shapes of the GSMFs in high- and low-density environments become extremely different, with high density regions exhibiting a marked bimodality, not reproducible by a single Schechter function. As a result of this analysis, we infer that galaxy evolution depends on both the stellar mass and the environment, the latter setting the probability of a galaxy to have a given mass: all the galaxy properties related to the stellar mass show a dependence on environment, reflecting the difference observed in the mass functions. The shapes of the GSMFs of early- and late-type galaxies are almost identical for the extremes of the density contrast we consider, ranging from isolated galaxies to rich group members. The evolution toward z = 0 of the transition mass M_(cross), i.e., the mass at which the early- and late-type GSMFs match each other, is more rapid in high density environments, because of a difference in the evolution of the normalisation of GSMFs compared to the total one in the considered environment. The same result is found by studying the relative contributions of different galaxy types, implying that there is a more rapid evolution in overdense regions, in particular for intermediate stellar masses. The rate of evolution is different for sets of galaxy types divided on the basis of their SEDs or their morphologies, tentatively suggesting that the migration from the blue cloud to the red sequence occurs on a shorter timescale than the transformation from disc-like morphologies to ellipticals. Our analysis suggests that environmental mechanisms of galaxy transformation start to be more effective at z < 1. The comparison of the observed GSMFs to the same quantities derived from a set of mock catalogues based on semi-analytical models shows disagreement, in both low and high density environments: in particular, blue galaxies in sparse environments are overproduced in the semi-analytical models at intermediate and high masses, because of a deficit of star formation suppression, while at z < 0.5 an excess of red galaxies is present in dense environments at intermediate and low masses, because of the overquenching of satellites.
The Astrophysical Journal | 2004
G. De Lucia; Bianca M. Poggianti; Alfonso Aragon-Salamanca; Douglas Clowe; C. Halliday; Pascale Jablonka; B. Milvang-Jensen; R. Pello; S. Poirier; Gregory Rudnick; R. P. Saglia; Luc Simard; Simon D. M. White
We study the rest-frame ( ) color-magnitude relation in four clusters at redshifts 0.7–0.8, drawn from the U V ESO Distant Cluster Survey (EDisCS). We confirm that the red-sequence galaxies in these clusters can be described as an old, passively evolving population, and we demonstrate that, by comparison with the Coma Cluster, there has been significant evolution in the stellar mass distribution of red-sequence galaxies since . The EDisCS z ∼ 0.75 clusters exhibit a deficiency of low-luminosity passive red galaxies. Defining as “faint” all galaxies in the passive evolution–corrected range , the luminous-to-faint ratio of red-sequence galaxies varies from 0.4 L/L 0.1 ∗ for the Coma Cluster to for the high-redshift clusters. These results exclude a syn0.34 0.06 0.81 0.18 chronous formation of all red-sequence galaxies and suggest that a large fraction of the faint red galaxies in current clusters moved on to the red sequence relatively recently. Their star formation activity presumably came to an end at . z 0.8 Subject headings: galaxies: clusters: general — galaxies: elliptical and lenticular, cD — galaxies: evolution — galaxies: formation
The Astrophysical Journal | 2007
Vandana Desai; Julianne J. Dalcanton; Alfonso Aragon-Salamanca; Pascale Jablonka; Bianca M. Poggianti; Stephanie M. Gogarten; Luc Simard; B. Milvang-Jensen; Gregory Rudnick; Dennis Zaritsky; Douglas Clowe; C. Halliday; R. Pello; R. P. Saglia; Simon D. M. White
We describe Hubble Space Telescope (HST) imaging of 10 of the 20 ESO Distant Cluster Survey (EDisCS) fields. Each ~40 arcmin^2 field was imaged in the F814W filter with the Advanced Camera for Surveys Wide Field Camera. Based on these data, we present visual morphological classifications for the ~920 sources per field that are brighter than I_(auto) = 23 mag. We use these classifications to quantify the morphological content of 10 intermediate-redshift (0.5 < z < 0.8) galaxy clusters within the HST survey region. The EDisCS results, combined with previously published data from seven higher redshift clusters, show no statistically significant evidence for evolution in the mean fractions of elliptical, S0, and late-type (Sp+Irr) galaxies in clusters over the redshift range 0.5 < z < 1.2. In contrast, existing studies of lower redshift clusters have revealed a factor of ~2 increase in the typical S0 fraction between z = 0.4 and 0, accompanied by a commensurate decrease in the Sp+Irr fraction and no evolution in the elliptical fraction. The EDisCS clusters demonstrate that cluster morphological fractions plateau beyond z ≈ 0.4. They also exhibit a mild correlation between morphological content and cluster velocity dispersion, highlighting the importance of careful sample selection in evaluating evolution. We discuss these findings in the context of a recently proposed scenario in which the fractions of passive (E, S0) and star-forming (Sp, Irr) galaxies are determined primarily by the growth history of clusters.
The Astrophysical Journal | 2008
Bianca M. Poggianti; Vandana Desai; Rose Finn; Steven P. Bamford; Gabriella De Lucia; Jesus Varela; Alfonso Aragon-Salamanca; C. Halliday; Stefan Noll; R. P. Saglia; Dennis Zaritsky; Philip Best; Douglas Clowe; B. Milvang-Jensen; Pascale Jablonka; R. Pello; Gregory Rudnick; Luc Simard; Anja von der Linden; Simon D. M. White
We investigate how the [O II] properties and the morphologies of galaxies in clusters and groups at z = 0.4–0.8 depend on projected local galaxy density, and compare with the field at similar redshifts and clusters at low z. In both nearby and distant clusters, higher density regions contain proportionally fewer star-forming galaxies, and the average [O II] equivalent width of star-forming galaxies is independent of local density. However, in distant clusters the average current star formation rate (SFR) in star-forming galaxies seems to peak at densities ~15-40 galaxies Mpc^−2. At odds with low-z results, at high z the relation between star-forming fraction and local density varies from high- to low-mass clusters. Overall, our results suggest that at high z the current star formation (SF) activity in star-forming galaxies does not depend strongly on global or local environment, though the possible SFR peak seems at odds with this conclusion. We find that the cluster SFR normalized by cluster mass anticorrelates with mass and correlates with the star-forming fraction. These trends can be understood given (1) that the average star-forming galaxy forms about 1⊙M yr^−1 (uncorrected for dust) in all clusters; (2) that the total number of galaxies scales with cluster mass; and (3) the dependence of star-forming fraction on cluster mass. We present the morphology-density (MD) relation for our z = 0.4 − 0.8 clusters, and uncover that the decline of the spiral fraction with density is entirely driven by galaxies of type Sc or later. For galaxies of a given Hubble type, we see no evidence that SF properties depend on local environment. In contrast with recent findings at low z, in our distant clusters the SF-density relation and the MD relation are equivalent, suggesting that neither of the two is more fundamental than the other.
The Astrophysical Journal | 2011
J. D. Silverman; P. Kampczyk; Knud Jahnke; R. Andrae; S. J. Lilly; M. Elvis; F. Civano; V. Mainieri; Christian Vignali; G. Zamorani; P. Nair; O. Le Fèvre; L. de Ravel; S. Bardelli; A. Bongiorno; M. Bolzonella; A. Cappi; Karina Caputi; C. M. Carollo; T. Contini; G. Coppa; O. Cucciati; S. de la Torre; P. Franzetti; B. Garilli; C. Halliday; G. Hasinger; A. Iovino; C. Knobel; Anton M. Koekemoer
Close encounters between galaxies are expected to be a viable mechanism, as predicted by numerical simulations, by which accretion onto supermassive black holes can be initiated. To test this scenario, we construct a sample of 562 galaxies (M_* > 2.5 × 10^(10) M_☉) in kinematic pairs over the redshift range 0.25 2 × 10^(42) erg s^(–1)) detected by Chandra. We find a higher fraction of an AGN in galaxies in pairs relative to isolated galaxies of similar stellar mass. Our result is primarily due to an enhancement of AGN activity, by a factor of 1.9 (observed) and 2.6 (intrinsic), for galaxies in pairs of projected separation less than 75 kpc and line-of-sight velocity offset less than 500 km s^(–1). This study demonstrates that close kinematic pairs are conducive environments for black hole growth, either indicating a causal physical connection or an inherent relation, such as, to enhanced star formation. In the Appendix, we describe a method for estimating the intrinsic fractions of galaxies (either in pairs or the field) hosting an AGN with confidence intervals, and an excess fraction in pairs. We estimate that 17.8^(+8.4)_(–7.4)% of all moderate-luminosity AGN activity takes place within galaxies undergoing early stages of interaction that leaves open the question as to what physical processes are responsible for fueling the remaining ~80% that may include late-stage mergers.
The Astrophysical Journal | 2009
Bianca M. Poggianti; Alfonso Aragon-Salamanca; Dennis Zaritsky; Gabriella De Lucia; B. Milvang-Jensen; Vandana Desai; Pascale Jablonka; C. Halliday; Gregory Rudnick; Jesus Varela; Steven P. Bamford; Philip Best; Douglas Clowe; Stefan Noll; R. P. Saglia; R. Pello; Luc Simard; Anja von der Linden; Simon D. M. White
Post-starburst (E+A or k+a) spectra, characterized by their exceptionally strong Balmer lines in absorption and the lack of emission lines, belong to galaxies in which the star formation (SF) activity ended abruptly sometime during the past Gyr. We perform a spectral analysis of galaxies in clusters, groups, poor groups, and the field at z = 0.4-0.8 based on the ESO Distant Cluster Survey. We find that the incidence of k+a galaxies at these redshifts depends strongly on environment. K+as reside preferentially in clusters and, unexpectedly, in a subset of the σ = 200-400 km s^(–1) groups, those that have a low fraction of O II emitters. In these environments, 20%-30% of the star-forming galaxies have had their SF activity recently truncated. In contrast, there are proportionally fewer k+a galaxies in the field, the poor groups, and groups with a high O II fraction. An important result is that the incidence of k+a galaxies correlates with the cluster velocity dispersion: more massive clusters have higher proportions of k+as. Spectra of dusty starburst candidates, with strong Balmer absorption and emission lines, present a very different environmental dependence from k+as. They are numerous in all environments at z = 0.4-0.8, but they are especially numerous in all types of groups, favoring the hypothesis of triggering by a merger. We present the morphological type, stellar mass, luminosity, mass-to-light ratio, local galaxy density, and clustercentric distance distributions of galaxies of different spectral types. These properties are consistent with previous suggestions that cluster k+a galaxies are observed in a transition phase, at the moment they are rather massive S0 and Sa galaxies, evolving from star-forming, recently infallen later types to passively evolving cluster early-type galaxies. The correlation between k+a fraction and cluster velocity dispersion supports the hypothesis that k+a galaxies in clusters originate from processes related to the intracluster medium, while several possibilities are discussed for the origin of the puzzling k+a frequency in low-O II groups.
Monthly Notices of the Royal Astronomical Society | 2006
H. R. Merrett; Michael R. Merrifield; N. G. Douglas; Konrad Kuijken; Aaron J. Romanowsky; N. R. Napolitano; Magda Arnaboldi; M. Capaccioli; Kenneth C. Freeman; Ortwin Gerhard; L. Coccato; D. Carter; N. W. Evans; M. I. Wilkinson; C. Halliday; Terry J. Bridges
This thesis presents a survey of compact emission-line objects in the Andromeda Galaxy (M31), performed using a novel new instrument, the Planetary Nebula Spectrograph. The final catalogue contains the positions, magnitudes and velocities for 3300 objects displaying [O III] emission at 5007 Angstroms, of which 2615 are found likely to be planetary nebulae (PNe) associated with M31. The survey area covers some 6 square degrees, taking in the whole of M31s disk out to a projected radius of 1.5 degrees, with extensions along the major and minor axes, and the Northern Spur and Southern Stream regions. The calibrated data have been checked for internal consistency and compared with other catalogues. With the exception of the very central, high surface brightness region of M31, this survey is complete to a magnitude limit of m(5007) ~ 23.75, 3.5 magnitudes into the planetary nebula luminosity function. A number of satellite and background galaxies are located within the M31 survey area and emission line objects associated with these have been identified. Analyses of the basic kinematic properties associated with each of these galaxies are presented. The PN catalogue has been analysed for non-kinematic, kinematic and dynamical properties. We have examined the planetary nebula luminosity function across M31, the spatial distribution of PNe, and the luminosity specific PN density. These analyses indicate that apart from a small change in the luminosity specific PN density there are no other non-kinematic differences between the bulge and disk PN populations suggesting that the sample of PNe is not strongly populated by objects whose progenitors are more massive stars. There is no indication of a significant halo PN population. Rotation curves for both the surveyed PNe and H II regions have been produced as well as the PN velocity dispersion profile. The H II rotation curve is seen to be in good agreement with those in the literature, while the PN rotation curve and velocity dispersion profile exhibit some peculiarities. However, under the approximation of an axisymmetric disk these are shown to be mutually consistent, but require the disk to flare with radius if the shape of its velocity ellipsoid remains invariant. The kinematic properties of photometric substructures are examined and kinematic substructures are searched for. A possible kinematic extension of the Southern Stream has been discovered. A new approach is taken in order to search for dynamical streams in the disk of the galaxy, involving an examination of the energy angular momentum plane. This also provides a new way of looking at the distribution function of a tracer population in a disk galaxy.