Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. J. Horsfield is active.

Publication


Featured researches published by C. J. Horsfield.


Review of Scientific Instruments | 2006

Development of nuclear diagnostics for the National Ignition Facility (invited)

V. Yu. Glebov; D. D. Meyerhofer; T. C. Sangster; C. Stoeckl; S. Roberts; C. A. Barrera; J. Celeste; Charles Cerjan; Lucile S. Dauffy; David C. Eder; R. L. Griffith; S. W. Haan; B. A. Hammel; S. P. Hatchett; N. Izumi; J. R. Kimbrough; J. A. Koch; O. L. Landen; R. A. Lerche; B. J. MacGowan; M. J. Moran; E. W. Ng; Thomas W. Phillips; P. Song; R. Tommasini; B. K. Young; S. E. Caldwell; Gary P. Grim; S. C. Evans; J. M. Mack

The National Ignition Facility (NIF) will provide up to 1.8MJ of laser energy for imploding inertial confinement fusion (ICF) targets. Ignited NIF targets are expected to produce up to 1019 DT neutrons. This will provide unprecedented opportunities and challenges for the use of nuclear diagnostics in ICF experiments. In 2005, the suite of nuclear-ignition diagnostics for the NIF was defined and they are under development through collaborative efforts at several institutions. This suite includes PROTEX and copper activation for primary yield measurements, a magnetic recoil spectrometer and carbon activation for fuel areal density, neutron time-of-flight detectors for yield and ion temperature, a gamma bang time detector, and neutron imaging systems for primary and downscattered neutrons. An overview of the conceptual design, the developmental status, and recent results of prototype tests on the OMEGA laser will be presented.


Review of Scientific Instruments | 2010

The National Ignition Facility neutron time-of-flight system and its initial performance (invited)a)

V. Yu. Glebov; T. C. Sangster; C. Stoeckl; J. P. Knauer; W. Theobald; K. L. Marshall; M. J. Shoup; T. Buczek; M. Cruz; T. Duffy; M. Romanofsky; M. Fox; A. Pruyne; M. J. Moran; R. A. Lerche; J. M. McNaney; J. D. Kilkenny; M. J. Eckart; D. Schneider; D. H. Munro; W. Stoeffl; R. Zacharias; J. J. Haslam; T. J. Clancy; M. Yeoman; D. Warwas; C. J. Horsfield; J. L. Bourgade; O. Landoas; L. Disdier

The National Ignition Facility (NIF) successfully completed its first inertial confinement fusion (ICF) campaign in 2009. A neutron time-of-flight (nTOF) system was part of the nuclear diagnostics used in this campaign. The nTOF technique has been used for decades on ICF facilities to infer the ion temperature of hot deuterium (D(2)) and deuterium-tritium (DT) plasmas based on the temporal Doppler broadening of the primary neutron peak. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the yield with high accuracy. The NIF nTOF system is designed to measure neutron yield and ion temperature over 11 orders of magnitude (from 10(8) to 10(19)), neutron bang time in DT implosions between 10(12) and 10(16), and to infer areal density for DT yields above 10(12). During the 2009 campaign, the three most sensitive neutron time-of-flight detectors were installed and used to measure the primary neutron yield and ion temperature from 25 high-convergence implosions using D(2) fuel. The OMEGA yield calibration of these detectors was successfully transferred to the NIF.


Review of Scientific Instruments | 2010

Diagnosing inertial confinement fusion gamma ray physics (invited).

H. W. Herrmann; Nelson M. Hoffman; D. C. Wilson; W. Stoeffl; Lucile S. Dauffy; Y. Kim; A. McEvoy; C. S. Young; J. M. Mack; C. J. Horsfield; M. S. Rubery; E. K. Miller; Zaheer Ali

The gamma reaction history (GRH) diagnostic is a multichannel, time-resolved, energy-thresholded γ-ray spectrometer that provides a high-bandwidth, direct-measurement of fusion reaction history in inertial confinement fusion implosion experiments. 16.75 MeV deuterium+tritium (DT) fusion γ-rays, with a branching ratio of the order of 10(-5)γ/(14 MeV n), are detected to determine fundamental burn parameters, such as nuclear bang time and burn width, critical to achieving ignition at the National Ignition Facility. During the tritium/hydrogen/deuterium ignition tuning campaign, an additional γ-ray line at 19.8 MeV, produced by hydrogen+tritium fusion with a branching ratio of unity, will increase the available γ-ray signal and may allow measurement of reacting fuel composition or ion temperature. Ablator areal density measurements with the GRH are also made possible by detection of 4.43 MeV γ-rays produced by inelastic scatter of DT fusion neutrons on (12)C nuclei in the ablating plastic capsule material.


Physics of Plasmas | 2009

Anomalous yield reduction in direct-drive deuterium/tritium implosions due to H3e additiona)

H. W. Herrmann; James R. Langenbrunner; J. M. Mack; J.H. Cooley; D. C. Wilson; S. C. Evans; T. J. Sedillo; G. A. Kyrala; S. E. Caldwell; C. S. Young; A. Nobile; Joseph R. Wermer; Stephen N. Paglieri; A. McEvoy; Y. Kim; S. H. Batha; C. J. Horsfield; D.W. Drew; Warren Garbett; M. S. Rubery; V. Yu. Glebov; S. Roberts; J. A. Frenje

Glass capsules were imploded in direct drive on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)] to look for anomalous degradation in deuterium/tritium (DT) yield and changes in reaction history with H3e addition. Such anomalies have previously been reported for D/H3e plasmas but had not yet been investigated for DT/H3e. Anomalies such as these provide fertile ground for furthering our physics understanding of inertial confinement fusion implosions and capsule performance. Anomalous degradation in the compression component of yield was observed, consistent with the “factor of 2” degradation previously reported by Massachusetts Institute of Technology (MIT) at a 50% H3e atom fraction in D2 using plastic capsules [Rygg, Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT but consistent with Los Alamos National Laboratory results in D2/H3e [Wilson et al., J. Phys.: Conf....


Plasma Physics and Controlled Fusion | 2015

Comprehensive description of the Orion laser facility

Nicholas Hopps; Kevin A. Oades; Jim Andrew; Colin Brown; Graham Cooper; C. Danson; Simon Daykin; Stuart Duffield; Ray D. Edwards; David Egan; Stephen Elsmere; S. Gales; Mark Girling; E. T. Gumbrell; Ewan Harvey; David Hillier; D.J. Hoarty; C. J. Horsfield; Steven James; Alex Leatherland; Stephen Masoero; Anthony L. Meadowcroft; Michael R. Norman; Stefan Parker; Stephen Rothman; Michael Rubery; Paul Treadwell; David Winter; Thomas H. Bett

The Orion laser facility at the atomic weapons establishment (AWE) in the UK has been operational since April 2013, fielding experiments that require both its long and short pulse capability. This paper provides a full description of the facility in terms of laser performance, target systems and diagnostics currently available. Inevitably, this is a snapshot of current capability—the available diagnostics and the laser capability are evolving continuously. The laser systems consist of ten beams, optimised around 1 ns pulse duration, which each provide a nominal 500 J at a wavelength of 351 nm. There are also two short pulse beams, which each provide 500 J in 0.5 ps at 1054 nm. There are options for frequency doubling one short pulse beam to enhance the pulse temporal contrast. More recently, further contrast enhancement, based on optical parametric amplification (OPA) in the front end with a pump pulse duration of a few ps, has been installed. An extensive suite of diagnostics are available for users, probing the optical emission, x-rays and particles produced in laser-target interactions. Optical probe diagnostics are also available. A description of the diagnostics is provided.


Physics of Plasmas | 2002

Impedance match equation of state experiments using indirectly laser-driven multimegabar shocks

Stephen Rothman; A. M. Evans; C. J. Horsfield; P. Graham; B. R. Thomas

Measurements of equation of state (EOS) points on the principal Hugoniots of Cu, Au, Pb and the plastics Parylene-C and brominated CH at multimegabar pressures have been made using the 1 TW HELEN laser at AWE. The aim was 1% accuracy in shock velocity measurement (3%–4% in pressure) in order to compare with data from gas-gun and nuclear underground test experiments and the theoretical EOS’s based on, or supported by, these data. Experiments comprised a hohlraum heated by two 500 J, 0.53 μm wavelength, 1 ns Gaussian laser pulses generating an x-ray flux which drove a shock into a target consisting of a base, with steps of a known EOS material and of the material of unknown EOS. Shock breakout from base and steps was detected by monitoring light emission from the target with optical streak cameras and shock velocities were derived from the transit times across the known-height steps.


Journal of Vacuum Science and Technology | 1995

In situ production of very low density microporous polymeric foams

John W. Falconer; Wigen Nazarov; C. J. Horsfield

Small, open‐ended, parylene microcylinders of 400 μm diameter, 700 μm length, and 10 μm wall thickness were filled with a solution of a polyfunctional monomer of low concentration. The solution was polymerised in situ with ultraviolet light to produce a gel. Precipitation of these gels in a nonsolvent and subsequent drying by means of a critical point drying apparatus produced microcylinders filled with a low density foam. Radiographic examination of the foam gave a density of the order of 2 mg cm−3, and scanning electron microscopy micrographs showed cell sizes of the order of 1 μm. No shrinkage of the foam was observed with cylinders of the dimensions given, but with larger cylinders of diameter and length of the order of 1000 μm, some axial shrinkage was observed which resulted in cylinders with slightly concave ends (of the order of 20 μm).


Journal of Physics: Conference Series | 2010

ICF gamma-ray reaction history diagnostics

H. W. Herrmann; C. S. Young; J. M. Mack; Y. Kim; A. McEvoy; S. C. Evans; T. J. Sedillo; S. H. Batha; M Schmitt; D. C. Wilson; J R Langenbrunner; Robert M. Malone; Morris I. Kaufman; Brian C. Cox; B. C. Frogget; E K Miller; Z A Ali; T. W. Tunnell; W. Stoeffl; C. J. Horsfield; M. S. Rubery

Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ~6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 1013–1017 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 1016–1020 yield range expected during the DT ignition campaign, providing higher temporal resolution for the expected burn widths of 10–20 ps associated with ignition. Multiple channels at each phase will allow for increased redundancy, reliability, accuracy and flexibility. In addition, inherent energy thresholding capability combined with this multiplicity will allow exploration of interesting gamma-ray physics well beyond the ignition campaign.


Review of Scientific Instruments | 2006

Multiplexed gas Cherenkov detector for reaction-history measurements

J. M. Mack; S. E. Caldwell; S. C. Evans; T. J. Sedillo; D. C. Wilson; C. S. Young; C. J. Horsfield; R. L. Griffith; R. A. Lerche

A diagnostic is being designed for the National Ignition Facility, using fusion gamma rays to measure highly time-resolved bang times and deuterium-tritium (d-t) interaction rates for imploding inertial fusion capsules. As a complement to neutron-based methods, gas Cherenkov detectors were chosen for this purpose because of proven ultrahigh bandwidth, thresholding versatility, and minimal time-of-flight dispersion. Gas Cherenkov detector prototypes, involving streak cameras and fast photomultiplier, microchannel plate detectors, are being tested using d-t implosions at the Omega Laser Facility. The possibility of simultaneous streak camera and photomultiplier, microchannel plate recordings of a source in one gas Cherenkov detector instrument is advantageous for reasons of independent measurement and extended reaction-history coverage. A multiplexed gas Cherenkov detector system was demonstrated successfully using electron pulses produced by the Idaho State University linear electron accelerator. A reactio...


Review of Scientific Instruments | 2010

National Ignition Facility neutron time-of-flight measurements (invited).

R. A. Lerche; V. Yu. Glebov; M. J. Moran; J. McNaney; J. D. Kilkenny; M. J. Eckart; R. A. Zacharias; J. J. Haslam; T. J. Clancy; M. Yeoman; D. Warwas; T. C. Sangster; C. Stoeckl; J. P. Knauer; C. J. Horsfield

The first 3 of 18 neutron time-of-flight (nTOF) channels have been installed at the National Ignition Facility (NIF). The role of these detectors includes yield, temperature, and bang time measurements. This article focuses on nTOF data analysis and quality of results obtained for the first set of experiments to use all 192 NIF beams. Targets produced up to 2×10(10) 2.45 MeV neutrons for initial testing of the nTOF detectors. Differences in neutron scattering at the OMEGA laser facility where the detectors were calibrated and at NIF result in different response functions at the two facilities. Monte Carlo modeling shows this difference. The nTOF performance on these early experiments indicates that the nTOF system with its full complement of detectors should perform well in future measurements of yield, temperature, and bang time.

Collaboration


Dive into the C. J. Horsfield's collaboration.

Top Co-Authors

Avatar

H. W. Herrmann

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Y. Kim

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. M. Mack

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. S. Rubery

Atomic Weapons Establishment

View shared research outputs
Top Co-Authors

Avatar

T. J. Sedillo

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. Stoeffl

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C. S. Young

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. C. Evans

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. H. Batha

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. McEvoy

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge