C. J. Pritchet
University of Victoria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. J. Pritchet.
Astronomy and Astrophysics | 2006
Pierre Astier; J. Guy; Nicolas Regnault; R. Pain; E. Aubourg; D. D. Balam; S. Basa; R. G. Carlberg; S. Fabbro; D. Fouchez; I. M. Hook; D. A. Howell; H. Lafoux; James D. Neill; N. Palanque-Delabrouille; K. Perrett; C. J. Pritchet; J. Rich; M. Sullivan; R. Taillet; G. Aldering; P. Antilogus; V. Arsenijevic; C. Balland; S. Baumont; J. Bronder; Herve Courtois; Richard S. Ellis; M. Filiol; A. C. Goncalves
We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS). These events were detected and their multi-color light-curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshift. With this data set, we have built a Hubble diagram extending to z = 1, with all distance measurements involving at least two bands. Systematic uncertainties are evaluated making use of the multiband photometry obtained at CFHT. Cosmological fits to this first year SNLS Hubble diagram give the following results: {Omega}{sub M} = 0.263 {+-} 0.042 (stat) {+-} 0.032 (sys) for a flat {Lambda}CDM model; and w = -1.023 {+-} 0.090 (stat) {+-} 0.054 (sys) for a flat cosmology with constant equation of state w when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.
Astronomy and Astrophysics | 2014
M. Betoule; Richard Kessler; J. Guy; Jennifer J. Mosher; D. Hardin; Rahul Biswas; P. Astier; P. El-Hage; M. Konig; S. E. Kuhlmann; John P. Marriner; R. Pain; Nicolas Regnault; C. Balland; Bruce A. Bassett; Peter J. Brown; Heather Campbell; R. G. Carlberg; F. Cellier-Holzem; D. Cinabro; A. Conley; C. B. D'Andrea; D. L. DePoy; Mamoru Doi; Richard S. Ellis; S. Fabbro; A. V. Filippenko; Ryan J. Foley; Joshua A. Frieman; D. Fouchez
Aims. We present cosmological constraints from a joint analysis of type Ia supernova (SN Ia) observations obtained by the SDSS-II and SNLS collaborations. The dataset includes several low-redshift samples (z< 0.1), all three seasons from the SDSS-II (0.05 <z< 0.4), and three years from SNLS (0.2 <z< 1), and it totals 740 spectroscopically confirmed type Ia supernovae with high-quality light curves.rnrnMethods. We followed the methods and assumptions of the SNLS three-year data analysis except for the following important improvements: 1) the addition of the full SDSS-II spectroscopically-confirmed SN Ia sample in both the training of the SALT2 light-curve model and in the Hubble diagram analysis (374 SNe); 2) intercalibration of the SNLS and SDSS surveys and reduced systematic uncertainties in the photometric calibration, performed blindly with respect to the cosmology analysis; and 3) a thorough investigation of systematic errors associated with the SALT2 modeling of SN Ia light curves.rnrnResults. We produce recalibrated SN Ia light curves and associated distances for the SDSS-II and SNLS samples. The large SDSS-II sample provides an effective, independent, low-z anchor for the Hubble diagram and reduces the systematic error from calibration systematics in the low-z SN sample. For a flat ΛCDM cosmology, we find Ωm =0.295 ± 0.034 (stat+sys), a value consistent with the most recent cosmic microwave background (CMB) measurement from the Planck and WMAP experiments. Our result is 1.8σ (stat+sys) different than the previously published result of SNLS three-year data. The change is due primarily to improvements in the SNLS photometric calibration. When combined with CMB constraints, we measure a constant dark-energy equation of state parameter w =−1.018 ± 0.057 (stat+sys) for a flat universe. Adding baryon acoustic oscillation distance measurements gives similar constraints: w =−1.027 ± 0.055. Our supernova measurements provide the most stringent constraints to date on the nature of dark energy.
Astrophysical Journal Supplement Series | 2011
A. Conley; J. Guy; Mark Sullivan; Nicolas Regnault; P. Astier; Christophe Balland; S. Basa; R. G. Carlberg; D. Fouchez; D. Hardin; I. M. Hook; D. A. Howell; R. Pain; N. Palanque-Delabrouille; K. Perrett; C. J. Pritchet; J. Rich; V. Ruhlmann-Kleider; D. D. Balam; S. Baumont; Richard S. Ellis; S. Fabbro; H. K. Fakhouri; N. Fourmanoit; S. Gonzalez-Gaitan; Melissa Lynn Graham; Michael J. Hudson; E. Y. Hsiao; T. Kronborg; C. Lidman
We combine high-redshift Type Ia supernovae from the first three years of the Supernova Legacy Survey (SNLS) with other supernova (SN) samples, primarily at lower redshifts, to form a high-quality joint sample of 472 SNe (123 low-z, 93 SDSS, 242 SNLS, and 14 Hubble Space Telescope). SN data alone require cosmic acceleration at >99.999% confidence, including systematic effects. For the dark energy equation of state parameter (assumed constant out to at least z = 1.4) in a flat universe, we find w = –0.91^(+0.16)_(–0.20)(stat)^(+0.07)_(–0.14)(sys) from SNe only, consistent with a cosmological constant. Our fits include a correction for the recently discovered relationship between host-galaxy mass and SN absolute brightness. We pay particular attention to systematic uncertainties, characterizing them using a systematic covariance matrix that incorporates the redshift dependence of these effects, as well as the shape-luminosity and color-luminosity relationships. Unlike previous work, we include the effects of systematic terms on the empirical light-curve models. The total systematic uncertainty is dominated by calibration terms. We describe how the systematic uncertainties can be reduced with soon to be available improved nearby and intermediate-redshift samples, particularly those calibrated onto USNO/SDSS-like systems.
Astronomy and Astrophysics | 2007
J. Guy; Pierre Astier; S. Baumont; D. Hardin; R. Pain; Nicolas Regnault; S. Basa; R. G. Carlberg; A. Conley; S. Fabbro; D. Fouchez; I. M. Hook; D. A. Howell; K. Perrett; C. J. Pritchet; J. Rich; M. Sullivan; P. Antilogus; E. Aubourg; G. Bazin; J. Bronder; M. Filiol; N. Palanque-Delabrouille; P. Ripoche; V. Ruhlmann-Kleider
We present an empirical model of Type Ia supernovae spectro-photometric evolution with time. The model is built using a large data set including light-curves and spectra of both nearby and distant supernovae, the latter being observed by the SNLS collaboration. We derive the average spectral sequence of Type Ia supernovae and their main variability components including a color variation law. The model allows us to measure distance moduli in the spectral range 2500-8000 A with calculable uncertainties, including those arising from variability of spectral features. Thanks to the use of high-redshift SNe to model the rest-frame UV spectral energy distribution, we are able to derive improved distance estimates for SNe Ia in the redshift range 0.8
The Astrophysical Journal | 2006
M. Sullivan; D. Le Borgne; C. J. Pritchet; A. Hodsman; James D. Neill; D. A. Howell; R. G. Carlberg; P. Astier; Eric Aubourg; D. D. Balam; S. Basa; A. Conley; Sebastien Fabbro; D. Fouchez; J. Guy; I. M. Hook; R. Pain; N. Palanque-Delabrouille; K. Perrett; Nicolas Regnault; J. Rich; Richard Taillet; S. Baumont; J. Bronder; Richard S. Ellis; M. Filiol; V. Lusset; S. Perlmutter; Pascal Ripoche; C. Tao
We show that Type Ia supernovae (SNe Ia) are formed within both very young and old stellar populations, with observed rates that depend on the stellar mass and mean star formation rates (SFRs) of their host galaxies. Models in which the SN Ia rate depends solely on host galaxy stellar mass are ruled out with >99% confidence. Our analysis is based on 100 spectroscopically confirmed SNe Ia, plus 24 photometrically classified events, all from the Supernova Legacy Survey (SNLS) and distributed over 0.2 < z < 0.75. We estimate stellar masses and SFRs for the SN Ia host galaxies by fitting their broadband spectral energy distributions with the galaxy spectral synthesis code PEGASE.2. We show that the SN Ia rate per unit mass is proportional to the specific SFR of the parent galaxies—more vigorously star-forming galaxies host more SNe Ia per unit stellar mass, broadly equivalent to the trend of increasing SN Ia rate in later type galaxies seen in the local universe. Following earlier suggestions for a simple two-component model approximating the SN Ia rate, we find bivariate linear dependencies of the SN Ia rate on both the stellar masses and the mean SFRs of the host systems. We find that the SN Ia rate can be well represented as the sum of 5.3 ± 1.1 × 10 to the -14 SNe yr to the -1 M(.)to the -1 and 3.9 ± 0.7 × 10 to the -4 SNe yr to the -1 (M(.) yr to the -1)to the -1 of star formation. We also demonstrate a dependence of distant SN Ia light-curve shapes on star formation in the host galaxy, similar to trends observed locally. Passive galaxies, with no star formation, preferentially host faster declining/dimmer SNe Ia, while brighter events are found in systems with ongoing star formation.
The Astrophysical Journal | 2011
J. Guy; A. Conley; Nicolas Regnault; P. Astier; Christophe Balland; S. Basa; R. G. Carlberg; D. Fouchez; D. Hardin; I. M. Hook; D. A. Howell; R. Pain; N. Palanque-Delabrouille; K. Perrett; C. J. Pritchet; J. Rich; V. Ruhlmann-Kleider; D. D. Balam; S. Baumont; Richard S. Ellis; S. Fabbro; H. K. Fakhouri; N. Fourmanoit; S. Gonzalez-Gaitan; Melissa Lynn Graham; Michael J. Hudson; E. Y. Hsiao; T. Kronborg; C. Lidman; Ana Mourao
We present observational constraints on the nature of dark energy using the Supernova Legacy Survey three-year sample (SNLS3) of Guy et al. and Conley et al. We use the 472 Type Ia supernovae (SNe Ia) in this sample, accounting for recently discovered correlations between SN Ia luminosity and host galaxy properties, and include the effects of all identified systematic uncertainties directly in the cosmological fits. Combining the SNLS3 data with the full WMAP7 power spectrum, the Sloan Digital Sky Survey luminous red galaxy power spectrum, and a prior on the Hubble constant H_0 from SHOES, in a flat universe we find Ω_m = 0.269 ± 0.015 and w = –1.061^(+0.069)_(–0.068) (where the uncertainties include all statistical and SN Ia systematic errors)—a 6.5% measure of the dark energy equation-of-state parameter w. The statistical and systematic uncertainties are approximately equal, with the systematic uncertainties dominated by the photometric calibration of the SN Ia fluxes—without these calibration effects, systematics contribute only a ~2% error in w. When relaxing the assumption of flatness, we find Ω_m = 0.271 ± 0.015, Ω_k = –0.002 ± 0.006, and w = –1.069^(+0.091)_(–0.092). Parameterizing the time evolution of w as w(a) = w_0 + w_a (1–a) gives w_0 = –0.905 ± 0.196, w_a = –0.984^(+1.094)_(– 1.097) in a flat universe. All of our results are consistent with a flat, w = –1 universe. The size of the SNLS3 sample allows various tests to be performed with the SNe segregated according to their light curve and host galaxy properties. We find that the cosmological constraints derived from these different subsamples are consistent. There is evidence that the coefficient, β, relating SN Ia luminosity and color, varies with host parameters at >4σ significance (in addition to the known SN luminosity-host relation); however, this has only a small effect on the cosmological results and is currently a subdominant systematic.
Astronomy and Astrophysics | 2010
J. Guy; Mark Sullivan; A. Conley; Nicolas Regnault; P. Astier; Christophe Balland; S. Basa; R. G. Carlberg; D. Fouchez; D. Hardin; I. M. Hook; D. A. Howell; R. Pain; N. Palanque-Delabrouille; K. Perrett; C. J. Pritchet; J. Rich; V. Ruhlmann-Kleider; D. D. Balam; S. Baumont; Richard S. Ellis; S. Fabbro; H. K. Fakhouri; N. Fourmanoit; S. González-Gaitán; Melissa Lynn Graham; E. Y. Hsiao; T. Kronborg; C. Lidman; Ana Mourao
Aims. We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) ndiscovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour nlight curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly nimaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes nto confirm the nature of the supernovae and to measure their redshifts. nMethods. Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak nmagnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. nResults. A flat ΛCDM cosmological fit to 231 SNLS high redshift type Ia supernovae alone gives Ω_M = 0.211 ± 0.034(stat) ± n0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties nfrom light curve fitters come next with a total contribution of ± 0.026 on Ω_M. No clear evidence is found for a possible evolution of nthe slope (β) of the colour-luminosity relation with redshift.
Monthly Notices of the Royal Astronomical Society | 2010
Mark Sullivan; A. Conley; D. A. Howell; James D. Neill; P. Astier; C. Balland; S. Basa; R. G. Carlberg; D. Fouchez; J. Guy; D. Hardin; I. M. Hook; R. Pain; N. Palanque-Delabrouille; K. Perrett; C. J. Pritchet; Nicolas Regnault; J. Rich; V. Ruhlmann-Kleider; S. Baumont; E. Y. Hsiao; T. Kronborg; C. Lidman; S. Perlmutter; E. S. Walker
Precision cosmology with Type la supernovae (SNe Ia) makes use of the fact that SN Ia luminosities depend on their light-curve shapes and colours. Using Supernova Legacy Survey (SNLS) and other data, we show that there is an additional dependence on the global characteristics of their host galaxies: events of the same light-curve shape and colour are, on average, 0.08 mag (similar or equal to 4.0 sigma) brighter in massive host galaxies (presumably metal-rich) and galaxies with low specific star formation rates (sSFR). These trends do not depend on any assumed cosmological model, and are independent of the SN light-curve width: both fast and slow-declining events show the same trends. SNe Ia in galaxies with a low sSFR also have a smaller slope (beta) between their luminosities and colours with similar to 2.7 sigma significance, and a smaller scatter on SN la Hubble diagrams (at 95 per cent confidence), though the significance of these effects is dependent on the reddest SNe. SN Ia colours are similar between low-mass and high-mass hosts, leading us to interpret their luminosity differences as an intrinsic property of the SNe and not of some external factor such as dust. If the host stellar mass is interpreted as a metallicity indicator using galaxy mass-metallicity relations, the luminosity trends are in qualitative agreement with theoretical predictions. We show that the average stellar mass, and therefore the average metallicity, of our SN Ia host galaxies decreases with redshift. The SN la luminosity differences consequently introduce a systematic error in cosmological analyses, comparable to the current statistical uncertainties on parameters such as in, the equation of state of dark energy. We show that the use of two SN Ia absolute magnitudes, one for events in high-mass (metal-rich) galaxies and the other for events in low-mass (metal-poor) galaxies, adequately corrects for the differences. Cosmological fits incorporating these terms give a significant reduction in chi(2) (3.8 sigma-4.5 sigma); linear corrections based on host parameters do not perform as well. We conclude that all future SN la cosmological analyses should use a correction of this (or similar) form to control demographic shifts in the underlying galaxy population.
The Astrophysical Journal | 2007
E. Y. Hsiao; A. Conley; D. A. Howell; M. Sullivan; C. J. Pritchet; R. G. Carlberg; Peter E. Nugent; Mark M. Phillips
With the advent of large dedicated Type Ia supernova (SN Ia) surveys, K-corrections of SNe Ia and their uncertainties have become especially important in the determination of cosmological parameters. While K-corrections are largely driven by SN Ia broadband colors, it is shown here that the diversity in spectral features of SNe Ia can also be important. For an individual observation, the statistical errors from the inhomogeneity in spectral features range from 0.01 (where the observed and rest-frame filters are aligned) to 0.04 (where the observed and rest-frame filters are misaligned). To minimize the systematic errors caused by an assumed SN Ia spectral energy distribution (SED), we outline a prescription for deriving a mean spectral template time series that incorporates a large and heterogeneous sample of observed spectra. We then remove the effects of broadband colors and measure the remaining uncertainties in the K-corrections associated with the diversity in spectral features. Finally, we present a template spectroscopic sequence near maximum light for further improvement on the K-correction estimate. A library of ~;;600 observed spectra of ~;;100 SNe Ia from heterogeneous sources is used for the analysis.
The Astrophysical Journal | 2000
David R. Patton; R. G. Carlberg; R. O. Marzke; C. J. Pritchet; L. N. da Costa; P. S. Pellegrini
The galaxy merger and accretion rates, and their evolution with time, provide important tests for models of galaxy formation and evolution. Close pairs of galaxies are the best available means of measuring redshift evolution in these quantities. In this study, we introduce two new pair statistics, which relate close pairs to the merger and accretion rates. We demonstrate the importance of correcting these (and other) pair statistics for selection effects related to sample depth and completeness. In particular, we highlight the severe bias that can result from the use of a flux-limited survey. The first statistic, Nc, gives the number of companions per galaxy within a specified range in absolute magnitude. Nc is directly related to the galaxy merger rate. The second statistic, Lc, gives the total luminosity in companions, per galaxy. This quantity can be used to investigate the mass accretion rate. Both Nc and Lc are related to the galaxy correlation function ξ and luminosity function (M) in a straightforward manner. Both statistics have been designed with selection effects in mind. We outline techniques that account for various selection effects and demonstrate the success of this approach using Monte Carlo simulations. If one assumes that clustering is independent of luminosity (which is appropriate for reasonable ranges in luminosity), then these statistics may be applied to flux-limited surveys. These techniques are applied to a sample of 5426 galaxies in the Second Southern Sky Redshift Survey (SSRS2). This is the first large, well-defined low-z survey to be used for pair statistics. Using close (5 h-1 kpc ≤ rp ≤ 20 h-1 kpc) dynamical (Δv ≤ 500 km s-1) pairs, we find Nc(-21 ≤ MB ≤ -18) = 0.0226 ± 0.0052 and Lc(-21 ≤ MB ≤ -18) = 0.0216 ± 0.0055 × 1010 h2 L☉ at z = 0.015. These are the first secure estimates of low-redshift pair statistics, and they will provide local benchmarks for ongoing and future pair studies. If Nc remains fixed with redshift, simple assumptions imply that ~6.6% of present day galaxies with -21 ≤ MB ≤ -18 have undergone mergers since z = 1. When applied to redshift surveys of more distant galaxies, these techniques will yield the first robust estimates of evolution in the galaxy merger and accretion rates.