Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. J. W. Breward is active.

Publication


Featured researches published by C. J. W. Breward.


Bulletin of Mathematical Biology | 2003

A Multiphase Model Describing Vascular Tumour Growth

C. J. W. Breward; Helen M. Byrne; Claire E. Lewis

In this paper we present a new model framework for studying vascular tumour growth, in which the blood vessel density is explicitly considered. Our continuum model comprises conservation of mass and momentum equations for the volume fractions of tumour cells, extracellular material and blood vessels. We include the physical mechanisms that we believe to be dominant, namely birth and death of tumour cells, supply and removal of extracellular fluid via the blood and lymph drainage vessels, angiogenesis and blood vessel occlusion. We suppose that the tumour cells move in order to relieve the increase in mechanical stress caused by their proliferation. We show how to reduce the model to a system of coupled partial differential equations for the volume fraction of tumour cells and blood vessels and the phase averaged velocity of the mixture. We consider possible parameter regimes of the resulting model. We solve the equations numerically in these cases, and discuss the resulting behaviour. The model is able to reproduce tumour structure that is found in vivo in certain cases. Our framework can be easily modified to incorporate the effect of other phases, or to include the effect of drugs.


Journal of Fluid Mechanics | 2002

The drainage of a foam lamella

C. J. W. Breward; P. D. Howell

We present a mathematical model for the drainage of a surfactant-stabilised foam lamella, including capillary, Marangoni and viscous effects and allowing for diffusion, advection and adsorption of the surfactant molecules. We use the slender geometry of a lamella to formulate the model in the thin-film limit and perform an asymptotic decomposition of the liquid domain into a capillary-static Plateau border, a time-dependent thin film and a transition region between the two. By solving a quasi-steady boundary-value problem in the transition region, we obtain the flux of liquid from the lamella into the Plateau border and thus are able to determine the rate at which the lamella drains. Our method is illustrated initially in the surfactant-free case. Numerical results are presented for three particular parameter regimes of interest when surfactant is present. Both monotonic profiles and those exhibiting a dimple near the Plateau border are found, the latter having been previously observed in experiments. The velocity field may be uniform across the lamella or of parabolic Poiseuille type, with fluid either driven out along the centre-line and back along the free surfaces or vice versa. We find that diffusion may be negligible for a typical real surfactant, although this does not lead to a reduction in order because of the inherently diffusive nature of the fluid-surfactant interaction. Finally, we obtain the surprising result that the flux of liquid from the lamella into the Plateau border increases as the lamella thins, approaching infinity at a finite lamella thickness.


European Journal of Applied Mathematics | 2001

Modelling the interactions between tumour cells and a blood vessel in a microenvironment within a vascular tumour

C. J. W. Breward; H. M. Byrne; Claire E. Lewis

In this paper, we develop a mathematical model to describe interactions between tumour cells and a compliant blood vessel that supplies oxygen to the region. We assume that, in addition to proliferating, the tumour cells die through apoptosis and necrosis. We also assume that pressure differences within the tumour mass, caused by spatial variations in proliferation and degradation, cause cell motion. We couple the behaviour of the blood vessel into the model for the oxygen tension. The model equations track the evolution of the densities of live and dead cells, the oxygen tension within the tumour, the live and dead cell speeds, the pressure and the width of the blood vessel. We present explicit solutions to the model for certain parameter regimes, and then solve the model numerically for more general parameter regimes. We show how the resulting steady-state behaviour varies as the key model parameters are changed. Finally, we discuss the biological implications of our work.


Bulletin of Mathematical Biology | 2011

The Effect of Polar Lipids on Tear Film Dynamics

E. Aydemir; C. J. W. Breward; Thomas P. Witelski

In this paper, we present a mathematical model describing the effect of polar lipids, excreted by glands in the eyelid and present on the surface of the tear film, on the evolution of a pre-corneal tear film. We aim to explain the interesting experimentally observed phenomenon that the tear film continues to move upward even after the upper eyelid has become stationary. The polar lipid is an insoluble surface species that locally alters the surface tension of the tear film. In the lubrication limit, the model reduces to two coupled non-linear partial differential equations for the film thickness and the concentration of lipid. We solve the system numerically and observe that increasing the concentration of the lipid increases the flow of liquid up the eye. We further exploit the size of the parameters in the problem to explain the initial evolution of the system.


Bulletin of Mathematical Biology | 2012

Coupling fluid and solute dynamics within the ocular surface tear film: a modelling study of black line osmolarity.

V. S. Zubkov; C. J. W. Breward; Eamonn A. Gaffney

We present a mathematical model describing the spatial distribution of tear film osmolarity across the ocular surface of a human eye during one blink cycle, incorporating detailed fluid and solute dynamics. Based on the lubrication approximation, our model comprises three coupled equations tracking the depth of the aqueous layer of the tear film, the concentration of the polar lipid, and the concentration of physiological salts contained in the aqueous layer. Diffusive boundary layers in the salt concentration occur at the thinnest regions of the tear film, the black lines. Thus, despite large Peclet numbers, diffusion ameliorates osmolarity around the black lines, but nonetheless is insufficient to eliminate the build-up of solute in these regions. More generally, a heterogeneous distribution of solute concentration is predicted across the ocular surface, indicating that measurements of lower meniscus osmolarity are not globally representative, especially in the presence of dry eye.Vertical saccadic eyelid motion can reduce osmolarity at the lower black line, raising the prospect that select eyeball motions more generally can assist in alleviating tear film hyperosmolarity. Finally, our results indicate that measured evaporative rates will induce excessive hyperosmolarity at the black lines, even for the healthy eye. This suggests that further evaporative retardation at the black lines, for instance due to the cellular glycocalyx at the ocular surface or increasing concentrations of mucus, will be important for controlling hyperosmolarity as the black line thins.


Journal of Colloid and Interface Science | 2011

On the predictions and limitations of the Becker-Doring model for reaction kinetics in micellar surfactant solutions

Ian Griffiths; Colin D. Bain; C. J. W. Breward; D.M. Colegate; P. D. Howell; Sarah L. Waters

We investigate the breakdown of a system of micellar aggregates in a surfactant solution following an order-one dilution. We derive a mathematical model based on the Becker-Döring system of equations, using realistic expressions for the reaction constants fit to results from Molecular Dynamics simulations. We exploit the largeness of typical aggregation numbers to derive a continuum model, substituting a large system of ordinary differential equations for a partial differential equation in two independent variables: time and aggregate size. Numerical solutions demonstrate that re-equilibration occurs in two distinct stages over well-separated timescales, in agreement with experiment and with previous theories. We conclude by exposing a limitation in the Becker-Döring theory for re-equilibration of surfactant solutions.


Chemical Engineering Science | 2001

The effect of surfactants on expanding free surfaces

C. J. W. Breward; R.C. Darton; P.D. Howell; J. R. Ockendon

Abstract This paper develops a systematic theory for the flow observed in the so-called “overflowing cylinder” experiment. The basic phenomenon to be explained is the order of magnitude increase in the surface velocity of a slowly overflowing beaker of water that is caused by the addition of a small amount of soluble surfactant. We perform analyses of (i) an inviscid bulk flow in which diffusion is negligible, (ii) a hydrodynamic boundary layer in which viscous effects become important, and (iii) a diffusive boundary layer where diffusion is significant, and by matching these together arrive at a coupled problem for the liquid velocity and surfactant concentration. Our model predicts a relation between surface velocity and surface concentration which is in good agreement with experiment. However, a degeneracy in the boundary conditions leaves one free parameter which must be taken from experimental data. We suggest an investigation that may resolve this indeterminacy.


European Journal of Applied Mathematics | 2004

Straining flow of a micellar surfactant solution

C. J. W. Breward; P. D. Howell

We present a mathematical model describing the distribution of monomer and micellar surfactant in a steady straining flow beneath a fixed free surface. The model includes adsorption of monomer surfactant at the surface and a single-step reaction whereby


Soft Matter | 2013

A new pathway for the re-equilibration of micellar surfactant solutions

Ian Griffiths; C. J. W. Breward; D.M. Colegate; P. J. Dellar; P. D. Howell; Colin D. Bain

n


Siam Journal on Applied Mathematics | 2012

An asymptotic theory for the re-equilibration of a micellar surfactant solution

Ian Griffiths; Colin D. Bain; C. J. W. Breward; S. J. Chapman; P. D. Howell; Sarah L. Waters

monomer molecules combine to form each micelle. The equations are analysed asymptotically and numerically and the results are compared with experiments. Previous studies of such systems have often assumed equilibrium between the monomer and micellar phases, i.e. that the reaction rate is effectively infinite. Our analysis shows that such an approach inevitably fails under certain physical conditions and also cannot accurately match some experimental results. Our theory provides an improved fit with experiments and allows the reaction rates to be estimated.

Collaboration


Dive into the C. J. W. Breward's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin P. Please

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge