C. Justin Van De Wiele
University of Oklahoma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Justin Van De Wiele.
Journal of Experimental Medicine | 2004
Linda F. Thompson; Holger K. Eltzschig; Juan C. Ibla; C. Justin Van De Wiele; Regina Resta; Julio C. Morote-Garcia; Sean P. Colgan
Extracellular adenosine has been widely implicated in adaptive responses to hypoxia. The generation of extracellular adenosine involves phosphohydrolysis of adenine nucleotide intermediates, and is regulated by the terminal enzymatic step catalyzed by ecto-5′-nucleotidase (CD73). Guided by previous work indicating that hypoxia-induced vascular leakage is, at least in part, controlled by adenosine, we generated mice with a targeted disruption of the third coding exon of Cd73 to test the hypothesis that CD73-generated extracellular adenosine functions in an innate protective pathway for hypoxia-induced vascular leakage. Cd73 −/− mice bred and gained weight normally, and appeared to have an intact immune system. However, vascular leakage was significantly increased in multiple organs, and after subjection to normobaric hypoxia (8% O2), Cd73 −/− mice manifested fulminant vascular leakage, particularly prevalent in the lung. Histological examination of lungs from hypoxic Cd73 −/− mice revealed perivascular interstitial edema associated with inflammatory infiltrates surrounding larger pulmonary vessels. Vascular leakage secondary to hypoxia was reversed in part by adenosine receptor agonists or reconstitution with soluble 5′-nucleotidase. Together, our studies identify CD73 as a critical mediator of vascular leakage in vivo.
Journal of Immunology | 2004
C. Justin Van De Wiele; Julie H. Marino; Bryce W. Murray; Stephen S. Vo; Michael E. Whetsell; T. Kent Teague
Interleukin-7 is widely accepted as a major homeostatic factor involved in T cell development. To assess the IL-7 responsiveness of thymocytes involved in selection processes, we used a new sensitive flow cytometry-based assay to detect intracellular phosphorylation of STAT-5 induced by IL-7 in defined mouse thymocyte subsets. Using this method, we found the earliest thymocyte subset (CD4−CD8−CD25−CD44+) to contain both IL-7-responsive and nonresponsive cells. Transition through the next stages of development (CD4−CD8−CD25+CD44+ and −) was associated with responsiveness of all thymocytes within these populations. Passage of thymocytes through β-selection resulted in a significant reduction in IL-7 sensitivity. In the next phases of development (TCR− and TCRlowCD69−), thymocytes were completely insensitive to the effects of IL-7. STAT-5 phosphorylation in response to IL-7 was again observed, however, in thymocytes involved in the positive selection process (TCRlowCD69+ and TCRintermediate). As expected, CD4 and CD8 single-positive thymocytes were responsive to IL-7. These findings delineate an IL-7-insensitive population between the β-selection and positive selection checkpoints encompassing thymocytes predicted to die by neglect due to failure of positive selection. This pattern of sensitivity suggests a two-signal mechanism by which survival of thymocytes at these checkpoints is governed.
Biochemical Pharmacology | 2003
Linda F. Thompson; James G. Vaughn; Aletha B. Laurent; Michael R. Blackburn; C. Justin Van De Wiele
Adenosine deaminase (ADA) catalyzes the conversion of adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. ADA-deficient individuals suffer from severe combined immunodeficiency and are unable to produce significant numbers of mature T or B lymphocytes. This occurs as a consequence of the accumulation of ADA substrates or their metabolites. dATP is a candidate toxic metabolite because its concentration in RBCs of ADA-deficient patients correlates with the severity of disease. Murine fetal thymic organ culture (FTOC) under ADA-deficient conditions can be used as a model system to investigate the biochemical mechanism responsible for the inhibition of thymopoiesis. In ADA-deficient FTOCs initiated at day 15 of gestation, thymocyte development was arrested at the CD4(-)CD8(-)CD44(lo)CD25(+) to CD4(-)CD8(-)CD44(lo)CD25(-) transition. Apoptosis appeared to be involved because the cultures could be rescued by the pan-caspase inhibitor zVADfmk, a Bcl-2 transgene, or deletion of apoptotic protease activating factor-1. As in ADA-deficient patients, dATP was also elevated in ADA-deficient FTOCs. dATP levels were normalized and thymocyte development was rescued in cultures treated with an inhibitor of adenosine kinase, the enzyme that phosphorylates deoxyadenosine to dAMP. zVADfmk also prevented the accumulation of dATP in ADA-deficient FTOCs, suggesting that deoxyadenosine was derived from thymocytes undergoing apoptosis as a consequence of failing the beta selection checkpoint. In contrast, dATP levels remained elevated in ADA-deficient FTOCs with fetal thymuses from Bcl-2 transgenic mice. These data suggest that thymocyte apoptosis as a consequence of failing developmental checkpoints involves one or more caspases that are not regulated by Bcl-2.
Journal of Surgical Research | 2008
Thomas A. Broughan; Rebecca Naukam; Chibing Tan; C. Justin Van De Wiele; Hazem H. Refai; T. Kent Teague
BACKGROUND Hepatocytes spend their lifetimes in a gradient of oxygen, hormones, and enzymes. We used a three-dimensional Matrigel model to determine whether hepatocytes cultured at perivenous (zone 3) oxygen levels differed in susceptibility to anoxia-induced cell injury compared with hepatocytes cultured at periportal (zone 1) oxygen levels. MATERIALS AND METHODS Hepatocytes were harvested from Sprague Dawley rats and cultured at 9% oxygen (hepatic zone 1) or 5% oxygen (hepatic zone 3) and stressed at 0% oxygen. Microscopy, real-time reverse transcriptase-polymerase chain reaction, and enzyme-linked immunosorbent assay were used to assess cell viability, mitochondrial potential, acute phase responses, and membrane blebbing. RESULTS Hepatocytes cultured in Matrigel with HepatoZyme medium at zone 1 and zone 3 oxygen conditions were viable for 1 wk and showed acute phase responses as measured by interleukin-6-induced fibrinogen production. In response to 3 h anoxia, cells maintained at the perivenous oxygen level showed increased membrane blebbing and increased loss of mitochondrial membrane potential in comparison to the periportal oxygen cultured cells. Cells at perivenous oxygen also showed a reduced ability to recover following reoxygenation. CONCLUSIONS Hepatocytes can remain viable and functional for extended periods in culture at low oxygen levels that mimic the hepatic perivenous environment, yet these cells are more susceptible to anoxia-induced damage than hepatocytes cultured at the periportal oxygen level. The small population of perivenous hepatocytes may be critical in determining the fate of the liver during ischemia/reperfusion since hepatocytes cultured at that concentration appear to be more labile in response to anoxia.
Cellular Immunology | 2007
C. Justin Van De Wiele; Julie H. Marino; Chibing Tan; Hilary A. Kneale; John Weber; John N. Morelli; Brenda K. Davis; Ashlee Taylor; T. Kent Teague
Murine thymocytes down-regulate IL-7 responsiveness following beta-selection and reacquire sensitivity after positive selection. To assess the potential consequences of IL-7 signaling during this phase of development, transgenic IL-7 receptor alpha (IL-7Ralpha) mice were evaluated for IL-7 responsiveness as gauged by STAT-5 phosphorylation. Transgenic IL-7Ralpha expression increased the percentage of thymocytes responsive to IL-7 yet resulted in a decrease in total thymic cellularity. Aberrant thymocyte development in transgenic mice was first manifested by a reduction of DN3 thymocytes that correlated with lower Bcl-2 expression. Surprisingly, transgenic restoration of Bcl-2 expression did not correct thymic hypocellularity induced by IL-7Ralpha overexpression. These findings demonstrate that failure to appropriately downregulate IL-7Ralpha expression interferes with thymocyte development past the pro-T stage resulting in significantly lower levels of mature thymocytes.
International Immunology | 2010
T. Kent Teague; Chibing Tan; Julie H. Marino; Brenda K. Davis; Ashlee Taylor; Ryan W. Huey; C. Justin Van De Wiele
CD27 and CD28 have emerged as indicators demarcating the transition of thymocytes through beta-selection. We found that CD28 exhibits a greater dynamic range of expression during this phase, thus it was employed to further parse the DN/CD44(-) compartment in order to assess IL-7 signaling during the beta-selection process. Plotting CD28 versus CD25 expression revealed six DN/CD44(-) populations. OP9-DL1 stromal cell co-culture was used to demonstrate a developmental linkage from DN3a (CD25(+)CD28(-/lo)) to DN3b (CD25(+)CD28(+)) to DN3c (CD25(int)CD28(+)) to DN4a (CD25(-)CD28(+)) to double positive (DP) and showed the DN4b (CD25(-)CD28(hi)) and DN4c (CD25(-)CD28(-/lo)) populations to be inefficient in producing DP cells. Using CD69 as an additional marker to further parse the DN4a population, we found the pre-DP cells to be the CD44(-)CD25(-)CD28(int)CD69(-)CD4(-/lo)CD8(-/lo) subset. Using this refined developmental scheme, IL-7R alpha expression was found to be transiently up-regulated post-beta-selection in the DN3b and DN3c subsets; however, this increase did not confer enhanced responsiveness over that observed in the DN3a population. CD28 messenger RNA expression was up-regulated in post-beta-selected cells, whereas transcripts for CD27, IL-7R alpha and Bcl-2 were lower than that observed in the DN3a population. This study refines the current thymocyte differentiation scheme to allow for more detailed evaluation of events controlling early T-cell development, specifically surrounding the beta-selection checkpoint.
Human Immunology | 2010
Julie H. Marino; Chibing Tan; Ashlee Taylor; Caroline Bentley; C. Justin Van De Wiele; Richard Ranne; Marco Paliotta; Thomas A. Broughan; T. Kent Teague
Interleukin (IL)-7 is a factor essential for mouse and human thymopoiesis. Mouse thymocytes have altered sensitivities to IL-7 at different developmental stages. CD4/CD8 double positive (DP) mouse thymocytes are shielded from the influence of IL-7 because of loss of CD127 (IL-7Ralpha). In this study, we assessed IL-7 receptor expression and IL-7 signaling in human thymocytes. We found human DP cells to be severely limited in their ability to phosphorylate STAT-5 in response to IL-7. The relative expression levels of the IL-7-inducible proteins Bcl-2 and Mcl-1 were also lower in human DP cells, consistent with a stage-specific decrease in IL-7 responsiveness. IL-7 responses were restored in a subset of cells that matured past the DP stage. Unlike the regulation of IL-7 signaling in mouse thymocytes, loss of IL-7 signaling in human DP cells was not due to absence of CD127, but instead correlated with downregulation of CD132 (common gamma chain).
Journal of Immunology | 2015
Siva K. Gandhapudi; Chibing Tan; Julie H. Marino; Ashlee Taylor; Christopher C. Pack; Joel Gaikwad; C. Justin Van De Wiele; Jonathan D. Wren; T. Kent Teague
Although IL-18 has not previously been shown to promote T lymphopoiesis, results obtained via a novel data mining algorithm (global microarray meta-analysis) led us to explore a predicted role for this cytokine in T cell development. IL-18 is a member of the IL-1 cytokine family that has been extensively characterized as a mediator of inflammatory immune responses. To assess a potential role for IL-18 in T cell development, we sort-purified mouse bone marrow–derived common lymphoid progenitor cells, early thymic progenitors (ETPs), and double-negative 2 thymocytes and cultured these populations on OP9–Delta-like 4 stromal layers in the presence or absence of IL-18 and/or IL-7. After 1 wk of culture, IL-18 promoted proliferation and accelerated differentiation of ETPs to the double-negative 3 stage, similar in efficiency to IL-7. IL-18 showed synergy with IL-7 and enhanced proliferation of both the thymus-derived progenitor cells and the bone marrow–derived common lymphoid progenitor cells. The synergistic effect on the ETP population was further characterized and found to correlate with increased surface expression of c-Kit and IL-7 receptors on the IL-18–treated cells. In summary, we successfully validated the global microarray meta-analysis prediction that IL-18 affects T lymphopoiesis and demonstrated that IL-18 can positively impact bone marrow lymphopoiesis and T cell development, presumably via interaction with the c-Kit and IL-7 signaling axis.
BMC Immunology | 2011
Chibing Tan; Ashlee Taylor; Matthew Z Coburn; Julie H. Marino; C. Justin Van De Wiele; T. Kent Teague
BackgroundWe have developed a 12-parameter/10-color flow cytometric staining method for the simultaneous detection and characterization of 21 mouse thymocyte subpopulations that represent discreet stages of T cell development. To demonstrate the utility of this method, we assessed cytokine receptor expression on mouse thymocyte subsets. These experiments revealed distinct patterns of surface expression of receptors for the cytokines IL-4 and IL-6.ResultsThe IL-4 receptor α chain (CD124) was highly expressed on the earliest thymocyte subsets, then downregulated prior to T cell receptor β-selection and finally upregulated in the CD4/CD8 double positive cells prior to positive selection. The IL-6 receptor α chain (CD126) showed a different pattern of expression. It was expressed on the most mature subsets within the CD4 and CD8 single positive (SP) compartments and was absent on all other thymocytes with the exception of a very small cKit-CD4-CD8- population. Intracellular staining of SP thymocytes for phosphorylated STAT-1 demonstrated that IL-6 signaling was confined to the most mature SP subsets.ConclusionsThis 12-parameter staining methodology uses only commercially available fluorochrome-coupled monoclonal antibodies and therefore could be employed by any investigator with access to a 4-laser flow cytometer. This novel staining scheme allowed us to easily phenotype thymocyte subpopulations that span across development, from the early thymic progenitors (ETPs) to the most mature subsets of the CD4 and CD8 single positive populations.
Journal of Immunology | 2006
C. Justin Van De Wiele; Michelle L. Joachims; Amy M. Fesler; James G. Vaughn; Michael R. Blackburn; Stephanie T. McGee; Linda F. Thompson
Murine fetal thymic organ culture (FTOC) was used to investigate the mechanism by which a lack of adenosine deaminase (ADA) leads to a failure of T cell production in the thymus. We previously showed that T cell development was inhibited beginning at the CD4−CD8−CD25+CD44low stage in ADA-deficient FTOC initiated at day 15 of gestation when essentially all thymocytes are CD4−CD8−. In the present study, we asked whether thymocytes at later stages of differentiation would also be sensitive to ADA inhibition by initiating FTOC when substantial numbers of CD4+CD8+ thymocytes were already present. dATP was highly elevated in ADA-deficient cultures, and the recovery of αβ TCR+ thymocytes was inhibited by 94%, indicating that the later stages of thymocyte differentiation are also dependent upon ADA. ADA-deficient cultures were partially rescued by the pan-caspase inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethyl ketone or by the use of apoptotic protease-activating factor-1-deficient mice. Rescue was even more dramatic, with 60- to >200-fold increases in the numbers of CD4+CD8+ cells, when FTOC were performed with an inhibitor of adenosine kinase, the major thymic deoxyadenosine phosphorylating enzyme, or with bcl-2 transgenic mice. dATP levels were normalized by treatment with either carbobenzoxy-Val-Ala-Asp-fluoromethyl ketone or an adenosine kinase inhibitor, but not in cultures with fetal thymuses from bcl-2 transgenic mice. These data suggest that ADA deficiency leads to the induction of mitochondria-dependent apoptosis as a consequence of the accumulation of dATP derived from thymocytes failing the positive/negative selection checkpoint.