C Küllig
University of Greifswald
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C Küllig.
Plasma Sources Science and Technology | 2010
C Küllig; Kristian Dittmann; Jürgen Meichsner
Microwave interferometry at 160.28 GHz with Gaussian beam propagation (beam waist: 5 mm) and laser photodetachment were combined for the analysis of negative atomic oxygen ions in the bulk plasma of an asymmetric capacitively coupled 13.56 MHz discharge (cc-rf). The line-integrated negative oxygen ion density amounts to between 2.5 × 1014 and 1015 m−2 depending on the oxygen pressure and rf power. Furthermore, the measured decay of the detachment signal reveals two modes of rf oxygen plasma characterized by different electronegativities. High electronegativity, α > 2, is associated with a low decay time constant of only a few microseconds, whereas in oxygen plasmas with low electronegativity, α < 1, the relaxation of electron density needs much longer with typical decay time constants of up to about 100 µs. The transition between the two modes shows a step-like characteristic and was observed at a specific rf power depending on the oxygen pressure. In the case of high electronegativity the electron density relaxation can be described by a simple 0D-attachment–detachment model, taking into consideration a constant density for positive ions and neutral oxygen species. Using the appropriate rate coefficients from the literature and the experimentally determined effective rate coefficients of first order kinetics, the evaluation of the attachment and detachment rates indicates the significant role of O2(a 1Δg) in the formation and loss of negative atomic oxygen ions.
Plasma Sources Science and Technology | 2012
Kristian Dittmann; C Küllig; Jürgen Meichsner
160 GHz Gaussian beam microwave interferometry is realized for electron density analysis in low pressure rf plasmas. Measurement of electron densities lower than 1016 m−3 with corresponding phase shift less than 0.3° demands high stability of the interferometer frequency and minimum disturbance due to external interfering voltages and mechanical vibrations of the optical components. The interferometer consists of a frequency stabilized (phase lock loop) heterodyne system operating at a frequency of fMWI = 160.28 GHz and wavelength of λMWI = 1.87 mm, respectively. A quasi-optical setup is used, considering specially designed horn antennas and elliptical mirrors as well as components which have to comply with the aperture limit in relation to the Gaussian microwave beam and its optimal coupling and focusing into the plasma center. A spatial and temporal resolution of about 10 mm (beam waist 5 mm) and 0.2 µs is achieved, respectively. In cc-rf plasma the lowest measurable phase shift is in the order of 0.01°, which corresponds to a line-integrated electron density of about 5 × 1013 m−2 or an electron density of 5 × 1014 m−3 averaged over the electrode diameter. Results are presented and discussed concerning line-integrated electron density in an asymmetric argon cc-rf plasma in dependence on rf power and total pressure.
Physics of Plasmas | 2012
C Küllig; K. Dittmann; Jürgen Meichsner
Line integrated electron densities are measured by 160.28 GHz Gaussian beam microwave interferometry in a 10 Hz pulsed (50% duty cycle) cc-rf oxygen discharge, operating at 13.56 MHz. Depending on the processing parameters, the oxygen rf discharge displays two different operation modes regarding its electronegativity. For higher rf power with negative self-bias voltage above −220 V, the oxygen discharge acts as electropositive plasma (n-/ne≪1), whereas at lower rf power and self-bias voltage the plasma becomes strongly electronegative (n-/ne>2). In the latter mode, a significant electron density increase is measured in the early afterglow (<100 μs) within a pressure range from 20 to 100 Pa. By use of a simple rate equation model, the temporal behavior of the electron density could be reproduced for both modes of electronegativity. The electron production in the early afterglow is mainly caused due to the detachment of negative atomic oxygen ions by metastable oxygen molecules.
Plasma Sources Science and Technology | 2015
T. Wegner; C Küllig; Jürgen Meichsner
A planar inductively coupled RF discharge (13.56 MHz) in argon and oxygen was exemplarily studied using space and phase resolved optical emission spectroscopy. The characteristic excitation rate pattern due to the electron heating during the sheath expansion was found for both gases in the E-mode. Furthermore, an intensive pattern in oxygen appears during the sheath collapse. This is associated with the electron heating caused by electric field reversal due to the strong electronegativity. The transition from the E- to the H-mode may be stepwise or continuous, depending on the gas type and total gas pressure. In the H-mode, significant differences in the excitation rate patterns exist. A broad and weakly modulated pattern is found over the RF cycle in argon, whereas in oxygen two separated patterns appear representing the electron heating for each half cycle. The reason may be the different excitation processes of the investigated resonant states and the influence of metastable argon atoms as well as attachment/detachment processes and dissociative recombination in oxygen. The E-H transition in oxygen at 5 Pa develops continuously and was studied in detail through the excitation rate. During the transition, the E- and H-mode are present and a hybrid mode was observed.
Plasma Sources Science and Technology | 2017
T. Wegner; C Küllig; Jürgen Meichsner
In this series of two papers, the E-H transition in a planar inductively coupled radio frequency discharge (13.56 MHz) in pure oxygen is studied using comprehensive plasma diagnostic methods. The electron density serves as the main plasma parameter to distinguish between the operation modes. The (effective) electron temperature, which is calculated from the electron energy distribution function and the difference between the floating and plasma potential, halves during the E-H transition. Furthermore, the pressure dependency of the RF sheath extension in the E-mode implies a collisional RF sheath for the considered total gas pressures. The gas temperature increases with the electron density during the E-H transition and doubles in the H-mode compared to the E-mode, whereas the molecular ground state density halves at the given total gas pressure. Moreover, the singlet molecular metastable density reaches 2% in the E-mode and 4% in the H-mode of the molecular ground state density. These measured plasma parameters can be used as input parameters for global rate equation calculations to analyze several elementary processes. Here, the ionization rate for the molecular oxygen ions is exemplarily determined and reveals, together with the optical excitation rate patterns, a change in electronegativity during the mode transition.
Plasma Sources Science and Technology | 2015
C Küllig; T. Wegner; Jürgen Meichsner
Axial and radial profiles of the positive ion saturation current were measured by Langmuir probe diagnostics in a capacitively coupled radio frequency (RF) plasma in argon and oxygen. Under certain conditions these profiles provide the spatial density distribution of the positive ions, which corresponds approximately to the electron density in the electropositive plasma. Particularly in oxygen at low RF power a peak in the ion saturation current appears in the radial direction at the electrode boundary. The axial position s at the maximum ion saturation current depends on total pressure with s ∝ p−1/3, which reveals the pressure dependence of a collisional RF sheath. Furthermore, Langmuir probe characteristics were evaluated in terms of the Druyvesteyn method to determine the radial behavior of the electron energy probability function (EEPF). From the EEPF the radially resolved effective electron temperature and electron density were calculated. The radial electron density profile from the Langmuir probe was numerically integrated to calculate a line integrated electron density for comparison with the measured line integrated density from 160 GHz microwave interferometry. The integration over the Langmuir probe density results in a line integrated density, which amounts to 40% of the line integrated density from microwave interferometry.
IEEE Transactions on Plasma Science | 2011
C Küllig; Kristian Dittmann; Jürgen Meichsner
Gaussian beam microwave interferometry (160 GHz, beam waist of 5 mm) is applied to study the electron density in capacitively coupled radio-frequency (RF) oxygen plasma. The microwave interferometry provides immediately the line-integrated electron density without model assumptions. In the considered range of RF power and total pressure, the investigations have shown that the oxygen plasma is dominated by electron density oscillations due to the attachment-induced ionization instability. The frequency of the mostly nonharmonic oscillations ranges between 0.3 and 3 kHz with peak-to-peak line-integrated electron density variations up to 3.5 × 1015 m-2.
Physics of Plasmas | 2016
Th. Wegner; C Küllig; Jürgen Meichsner
This contribution presents experimental results about the mode transition of an inductively coupled radio frequency (RF) (13.56 MHz) argon discharge at different total gas pressures. In particular, the positive ion saturation current and the line integrated electron density are measured by Langmuir probe and 160 GHz microwave interferometer, respectively. The mode transition strongly depends on the total gas pressure and can appear stepwise or continuously. The space resolved positive ion saturation current is separately shown for the E- and H-mode at different total gas pressures. Therewith, the pressure dependency of the RF sheath thickness indicates a collisional sheath. The hysteresis phenomenon during the E-H and the inverse H-E transition is discussed within the framework of the matching situation for different total gas pressures. The hysteresis width is analyzed using the absorbed power as well as the coil voltage and current. As a result, the width strongly increases with pressure regarding the p...
Plasma Sources Science and Technology | 2017
T. Wegner; C Küllig; Jürgen Meichsner
In this series of two papers we present results about the E-H transition of an inductively coupled oxygen discharge driven at radio frequency (13.56 MHz) for different total gas pressures. The mode transition from the low density E-mode to the high density H-mode is studied using comprehensive plasma diagnostics. The measured electron density can be used to distinguish between the different operation modes. This paper focuses on the determination of the negative atomic ion density and the electronegativity by two experimental methods and global rate equation calculation. As a result, the electronegativity significantly decreases over two orders of magnitude from about 25 in the E-mode to about 0.1 in the H-mode. The temporal behavior of the electronegativity in pulsed ICP shows that the negative atomic ion density reaches a steady state after 10 ms. Negative atomic ions are mainly produced by the dissociative attachment with the molecular ground state. The ion–ion recombination with the positive molecular ions and the collisional detachment with the singlet molecular metastables contribute significantly to the loss of the negative atomic ions.
IEEE Transactions on Plasma Science | 2014
Thomas Wegner; C Küllig; Jürgen Meichsner
Instabilities in an asymmetric capacitively coupled radio frequency argon discharge occur within the pressure range of 70-100 Pa while adding low amounts of CF4. The development of these instabilities is highly dynamic in time and space. The instabilities strongly influence the optical plasma emission and electron density, respectively.