Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C.L. Chang is active.

Publication


Featured researches published by C.L. Chang.


Physical Review Letters | 2006

Limits on Spin-Independent Interactions of Weakly Interacting Massive Particles with Nucleons from the Two-Tower Run of the Cryogenic Dark Matter Search

D. S. Akerib; M. J. Attisha; C. N. Bailey; L. Baudis; D. A. Bauer; P. L. Brink; P.P. Brusov; R. Bunker; B. Cabrera; David O. Caldwell; C.L. Chang; J. Cooley; M. B. Crisler; P. Cushman; M. Daal; R. Dixon; M.R. Dragowsky; D. Driscoll; L. Duong; R. Ferril; J. Filippini; R.J. Gaitskell; S. R. Golwala; D. R. Grant; R. Hennings-Yeomans; D. Holmgren; M. E. Huber; S. Kamat; S. Leclercq; A. Lu

We report new results from the Cryogenic Dark Matter Search (CDMS II) at the Soudan Underground Laboratory. Two towers, each consisting of six detectors, were operated for 74.5 live days, giving spectrum-weighted exposures of 34 kg-d for germanium and 12 kg-d for silicon targets after cuts, averaged over recoil energies 10-100 keV for a WIMP mass of 60 GeV. A blind analysis was conducted, incorporating improved techniques for rejecting surface events. No WIMP signal exceeding expected backgrounds was observed. When combined with our previous results from Soudan, the 90% C.L. upper limit on the spin-independent WIMP-nucleon cross section is 1.6 x 10^{-43} cm^2 from Ge, and 3 x 10^{-42} cm^2 from Si, for a WIMP mass of 60 GeV. The combined limit from Ge (Si) is a factor of 2.5 (10) lower than our previous results, and constrains predictions of supersymmetric models.


Physical Review Letters | 2004

First Results from the Cryogenic Dark Matter Search in the Soudan Underground Laboratory

D. S. Akerib; J. Alvaro-Dean; M. S. Armel-Funkhouser; M. J. Attisha; L. Baudis; D. A. Bauer; J. Beaty; P. L. Brink; R. Bunker; S. Burke; B. Cabrera; David O. Caldwell; D. Callahan; J. P. Castle; C.L. Chang; R. Choate; M. B. Crisler; P. Cushman; R. Dixon; M.R. Dragowsky; D. Driscoll; L. Duong; J. Emes; R. Ferril; J. P. Filippini; R.J. Gaitskell; M. Haldeman; Daniel E. Hale; D. Holmgren; M. E. Huber

We report the first results from a search for weakly interacting massive particles (WIMPs) in the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. Four Ge and two Si detectors were operated for 52.6 live days, providing 19.4 kg-d of Ge net exposure after cuts for recoil energies between 10--100 keV. A blind analysis was performed using only calibration data to define the energy threshold and selection criteria for nuclear-recoil candidates. Using the standard dark-matter halo and nuclear-physics WIMP model, these data set the worlds lowest exclusion limits on the coherent WIMP-nucleon scalar cross-section for all WIMP masses above 15 GeV, ruling out a significant range of neutralino supersymmetric models. The minimum of this limit curve at the 90% C.L. is 4 x 10^{-43} cm^2 at a WIMP mass of 60 GeV.


Physical Review D | 2005

Exclusion limits on the WIMP-nucleon cross section from the first run of the Cryogenic Dark Matter Search in the Soudan Underground Laboratory

D. S. Akerib; M. S. Armel-Funkhouser; M. J. Attisha; C. N. Bailey; L. Baudis; D. A. Bauer; P. L. Brink; R. Bunker; B. Cabrera; David O. Caldwell; C.L. Chang; M. B. Crisler; P. Cushman; M. Daal; R. Dixon; M.R. Dragowsky; D. Driscoll; L. Duong; R. Ferril; J. Filippini; R.J. Gaitskell; R. Hennings-Yeomans; D. Holmgren; M. E. Huber; S. Kamat; A. Lu; R. Mahapatra; V. Mandic; John M. Martinis; P. Meunier

The Cryogenic Dark Matter Search (CDMS-II) employs low-temperature Ge and Si detectors to seek Weakly Interacting Massive Particles (WIMPs) via their elastic scattering interactions with nuclei. Simultaneous measurements of both ionization and phonon energy provide discrimination against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with>99.99% efficiency. Electromagnetic events very near the detector surface can mimic nuclear recoils because of reduced charge collection, but these surface events are rejected with>96% efficiency by using additional information from the phonon pulse shape. Efficient use of active and passive shielding, combined with the the 2090 m.w.e. overburden at the experimental site in the Soudan mine, makes the background from neutrons negligible for this first exposure. All cuts are determined in a blind manner from in situ calibrations with external radioactive sources without any prior knowledge of the event distribution in the signal region. Resulting efficiencies are known to ~10%. A single event with a recoil of 64 keV passes all of the cuts and is consistent with the expected misidentification rate of surface-electron recoils. Under the assumptions for a standard dark matter halo, these data exclude previously unexplored parameter space for both spin-independent and spin-dependent WIMP-nucleon elastic scattering. The resulting limit on the spin-independent WIMP-nucleon elastic-scattering cross-section has a minimum of 4x10^-43 cm^2 at a WIMP mass of 60 GeV/c^2. The minimum of the limit for the spin-dependent WIMP-neutron elastic-scattering cross-section is 2x10^-37 cm^2 at a WIMP mass of 50 GeV/c^2.


Physical Review D | 2006

Limits on spin-dependent WIMP-nucleon interactions from the Cryogenic Dark Matter Search

D. S. Akerib; M. S. Armel-Funkhouser; M. J. Attisha; C. N. Bailey; L. Baudis; D. A. Bauer; P. L. Brink; P.P. Brusov; R. Bunker; B. Cabrera; David O. Caldwell; C.L. Chang; J. Cooley; M. B. Crisler; P. Cushman; M. Daal; F. DeJongh; R. Dixon; M.R. Dragowsky; D. Driscoll; L. Duong; R. Ferril; J. Filippini; R.J. Gaitskell; S. R. Golwala; D. R. Grant; R. Hennings-Yeomans; D. Holmgren; M. E. Huber; S. Kamat

The Cryogenic Dark Matter Search (CDMS) is an experiment to detect weakly interacting massive particles (WIMPs) based on their interactions with Ge and Si nuclei. We report the results of an analysis of data from the first two runs of CDMS at the Soudan Underground Laboratory in terms of spin-dependent WIMP-nucleon interactions on 73Ge and 29Si. These data exclude new regions of spin-dependent WIMP-nucleon interaction parameter space, including regions relevant to spin-dependent interpretations of the annual modulation signal reported by the DAMA/NaI experiment.


To appear in the proceedings of | 2005

The SuperCDMS Experiment

R. W. Schnee; D. S. Akerib; M. J. Attisha; C. N. Bailey; L. Baudis; D. A. Bauer; P. L. Brink; Pavel Brusov; R. Bunker; B. Cabrera; David O. Caldwell; C.L. Chang; J. Cooley; M. B. Crisler; P. Cushman; Peter Denes; M. R. Dragowsky; L. Duong; J. Filippini; R.J. Gaitskell; S. R. Golwala; D. R. Grant; R. Hennings-Yeomans; D. Holmgren; M. E. Huber; K. D. Irwin; A. Lu; R. Mahapatra; P. Meunier; N. Mirabolfathi

Modest improvements in the level and/or discrimination of backgrounds are needed to keep backgrounds negligible during the three phases of SuperCDMS. By developing production designs that require only modest testing, detector production rates may be improved sufficiently to allow an exposure of 500 ton d within a reasonable time and budget. Overall, the improvement estimates described above are conservative. Previous development efforts have shown that some areas prove easier and provide larger factors while others prove more difficult. The conservative estimates together with the broad approach reduce the risk and give us confidence that we will succeed, providing the surest way to probe to WIMP-nucleon cross sections of 10{sup -46} cm{sup 2}.


Nuclear Physics B - Proceedings Supplements | 2002

Deployment of the first CDMS II ZIP Detectors at the Stanford Underground Facility

T. Saab; David S. Abrams; D. S. Akerib; D. A. Bauer; P. L. Brink; B. Cabrera; J. P. Castle; C.L. Chang; M. B. Crisler; D. Driscoll; J. Emes; M. E. Huber; R. J. Gaitskell; J. Hellmig; V. Mandic; John M. Martinis; P. Meunier; M. Perillo-Isaac; T. A. Perera; B. Sadoulet; R. W. Schnee; D. N. Seitz; B. A. Young

Abstract The CDMS II experiment deployed the first set of ZIP (Z-dependent Ionization and Phonon) detectors at the Stanford Underground Facility (SUF) shallow depth site in the spring of 2000. With a payload consisting of 3 Ge (250g ea.) and 3 Si (100g ea.) ZIPs, the run was the first demostration of multiple ZIPs operating simltaneously. Good discrimination between electron and nuclear recoil events of 99.8% was established, down to recoil energies of 10 keV. A measurement of the γ, β, and neutron backgrounds was made.


LOW TEMPERATURE DETECTORS: Ninth International Workshop on Low Temperature Detectors | 2002

Position dependence in the CDMS II ZIP detectors

V. Mandic; W. Rau; D. S. Akerib; P. L. Brink; B. Cabrera; J. P. Castle; C.L. Chang; M. B. Crisler; D. Driscoll; J. Emes; R. J. Gaitskell; J. Hellmig; M. E. Huber; S. Kamat; John M. Martinis; P. Meunier; T. A. Perera; M. Perillo-Issac; T. Saab; B. Sadoulet; R. W. Schnee; D. N. Seitz; G. Wang; B. A. Young

The Ge and Si detectors developed by the Cryogenic Dark Matter Search (CDMS) II experiment rely on the simultaneous detection of athermal phonons and ionization produced by interactions in the crystal. The athermal phonons provide both the total energy deposited in an interaction and the information about the position of the interaction. We describe extracting this information from the pulse shapes in the four phonon sensors. We present the result of measurements made on a Si detector from the first CDMS II production batch. We also investigate ways of using the event position information to extract further information about the phonon signal.


arXiv: Astrophysics | 2007

CDMS, Supersymmetry and Extra Dimensions

D. S. Akerib; M. J. Attisha; C. N. Bailey; L. Baudis; D. A. Bauer; P. L. Brink; P.P. Brusov; R. Bunker; B. Cabrera; David O. Caldwell; C.L. Chang; J. Cooley; M. B. Crisler; P. Cushman; M. Daal; R. Dixon; M. R. Dragowsky; D. Driscoll; L. Duong; R. Ferril; J. Filippini; R.J. Gaitskell; S. R. Golwala; D. R. Grant; R. Hennings-Yeomans; D. Holmgren; M. E. Huber; S. Kamat; S. Leclercq; A. Lu

The CDMS experiment aims to directly detect massive, cold dark matter particles originating from the Milky Way halo. Charge and lattice excitations are detected after a particle scatters in a Ge or Si crystal kept at ∼30 mK, allowing to separate nuclear recoils from the dominating electromagnetic background. The operation of 12 detectors in the Soudan mine for 75 live days in 2004 delivered no evidence for a signal, yielding stringent limits on dark matter candidates from supersymmetry and universal extra dimensions. Thirty Ge and Si detectors are presently installed in the Soudan cryostat, and operating at base temperature. The run scheduled to start in 2006 is expected to yield a one order of magnitude increase in dark matter sensitivity.


LOW TEMPERATURE DETECTORS: Ninth International Workshop on Low Temperature Detectors | 2002

Demonstration of the CDMS II ZIP technology at a shallow underground site

T. Saab; David S. Abrams; D. S. Akerib; D. A. Bauer; P. L. Brink; B. Cabrera; J. P. Castle; C.L. Chang; M. B. Crisler; D. Driscoll; J. Emes; M. E. Huber; R. J. Gaitskell; J. Hellmig; V. Mandic; John M. Martinis; P. Meunier; M. Perillo-Isaac; T. A. Perera; B. Sadoulet; R. W. Schnee; D. N. Seitz; B. A. Young

The most recent CDMS data run (Run 20) was the first run in which multiple ZIP detectors were deployed. Three Si (0.100 kg each) and 3 Ge (0.250 kg each) ZIPs were run with the goals of fully testing such a configuration as well as measuring the γ, β, and n rates simultaneously with Ge and Si detectors. Calibration with γ and n sources established the bulk electron recoil leakage into the neutron band to be less than 0.2%. Low background data taken during the summer of 2000 produced a simultaneous measurement of the muon coincident neutron background with Si and Ge detectors.


LOW TEMPERATURE DETECTORS: Ninth International Workshop on Low Temperature Detectors | 2002

Determination of the Tc distribution for 1000 Transition Edge Sensors

P. L. Brink; T. Saab; Aaron J. Miller; B. A. Young; D. S. Akerib; B. Cabrera; J. P. Castle; C.L. Chang; D. Discroll; J. Emes; R.J. Gaitskell; S. Kamat; V. Mandic; P. Meunier; T. A. Perera; W. Rau; B. Sadoulet; D. N. Seitz; R. W. Schnee; G. Wang

The ZIP detectors deployed in the CDMS II experiment utilize phonon sensors comprising W Transition Edge Sensors (TESs). In order to ensure uniform collection of the athermal phonon signal the TESs are dispersed uniformly on one side of a 1 cm thick, 3 inch diameter, disk. Each quadrant contains 1036 TESs connected in parallel to one series-array SQUID amplifier. The initial superconducting transition temperatures of these TESs tend to be too high for our requirements, and substantial gradients make the operation of the detectors difficult. Hence our implementation of Fe-56 ion implantation, as reported at the previous LTD meeting, to reduce in a controlled manner the transition temperature. However, the successful implementation of this ion-implantation scheme requires accurate knowledge of the initial transition temperature of each TES in a given quadrant. We report on our approaches and techniques employed to address the issue of determining the initial Tc distribution.

Collaboration


Dive into the C.L. Chang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. S. Akerib

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Driscoll

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

M. E. Huber

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge