Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. L. Johnson is active.

Publication


Featured researches published by C. L. Johnson.


Journal of Geophysical Research | 2001

Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars

David E. Smith; Maria T. Zuber; Herbert V. Frey; James B. Garvin; James W. Head; Duane O. Muhleman; Gordon H. Pettengill; Roger J. Phillips; Sean C. Solomon; H. Jay Zwally; W. Bruce Banerdt; Thomas C. Duxbury; Matthew P. Golombek; Frank G. Lemoine; Gregory A. Neumann; David D. Rowlands; Oded Aharonson; Peter G. Ford; A. Ivanov; C. L. Johnson; Patrick J. McGovern; James B. Abshire; Robert S. Afzal; Xiaoli Sun

The Mars Orbiter Laser Altimeter (MOLA), an instrument on the Mars Global Surveyor spacecraft, has measured the topography, surface roughness, and 1.064-μm reflectivity of Mars and the heights of volatile and dust clouds. This paper discusses the function of the MOLA instrument and the acquisition, processing, and correction of observations to produce global data sets. The altimeter measurements have been converted to both gridded and spherical harmonic models for the topography and shape of Mars that have vertical and radial accuracies of ~1 m with respect to the planets center of mass. The current global topographic grid has a resolution of 1/64° in latitude × 1/32° in longitude (1 × 2 km^2 at the equator). Reconstruction of the locations of incident laser pulses on the Martian surface appears to be at the 100-m spatial accuracy level and results in 2 orders of magnitude improvement in the global geodetic grid of Mars. Global maps of optical pulse width indicative of 100-m-scale surface roughness and 1.064-μm reflectivity with an accuracy of 5% have also been obtained.


Science | 2011

The Global Magnetic Field of Mercury from MESSENGER Orbital Observations

Brian J. Anderson; C. L. Johnson; Haje Korth; Michael E. Purucker; Reka M. Winslow; James A. Slavin; Sean C. Solomon; Ralph L. McNutt; Jim M. Raines; Thomas H. Zurbuchen

Displacement of Mercurys magnetic dipole implies that the surface field has a north-south asymmetry. Magnetometer data acquired by the MESSENGER spacecraft in orbit about Mercury permit the separation of internal and external magnetic field contributions. The global planetary field is represented as a southward-directed, spin-aligned, offset dipole centered on the spin axis. Positions where the cylindrical radial magnetic field component vanishes were used to map the magnetic equator and reveal an offset of 484 ± 11 kilometers northward of the geographic equator. The magnetic axis is tilted by less than 3° from the rotation axis. A magnetopause and tail-current model was defined by using 332 magnetopause crossing locations. Residuals of the net external and offset-dipole fields from observations north of 30°N yield a best-fit planetary moment of 195 ± 10 nanotesla-RM3, where RM is Mercury’s mean radius.


Science | 2012

Gravity Field and Internal Structure of Mercury from MESSENGER

David E. Smith; Maria T. Zuber; Roger J. Phillips; Sean C. Solomon; Steven A. Hauck; Frank G. Lemoine; Erwan Mazarico; Gregory A. Neumann; Stanton J. Peale; Jean-Luc Margot; C. L. Johnson; Mark H. Torrence; Mark E. Perry; David D. Rowlands; Sander Goossens; James W. Head; Anthony H. Taylor

Mercury Inside and Out The MESSENGER spacecraft orbiting Mercury has been in a ∼12-hour eccentric, near-polar orbit since 18 March 2011 (see the Perspective by McKinnon). Smith et al. (p. 214, published online 21 March) present the most recent determination of Mercurys gravity field, based on radio tracking of the MESSENGER spacecraft between 18 March and 23 August 2011. The results point to an interior structure that differs from those of the other terrestrial planets: the density of the planets solid outer shell suggests the existence of a deep reservoir of high-density material, possibly an Fe-S layer. Zuber et al. (p. 217, published online 21 March) used data obtained by the MESSENGER laser altimeter through to 24 October 2011 to build a topographic map of Mercurys northern hemisphere. The map shows less variation in elevation, compared with Mars or the Moon, and its features add to the body of evidence that Mercury has sustained geophysical activity for much of its history. Mercury’s outer solid shell is denser than expected, suggesting a deep reservoir of high-density material, possibly iron-sulfide. Radio tracking of the MESSENGER spacecraft has provided a model of Mercury’s gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury’s northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR2 = 0.353 ± 0.017, where M and R are Mercury’s mass and radius, and a ratio of the moment of inertia of Mercury’s solid outer shell to that of the planet of Cm/C = 0.452 ± 0.035. A model for Mercury’s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.


Geochemistry Geophysics Geosystems | 2008

Recent investigations of the 0–5 Ma geomagnetic field recorded by lava flows

C. L. Johnson; Catherine Constable; Lisa Tauxe; René W. Barendregt; Laurie L. Brown; Robert S. Coe; Paul W. Layer; V. Mejia; Neil D. Opdyke; Brad S. Singer; Hubert Staudigel; David B. Stone

We present a synthesis of 0–5 Ma paleomagnetic directional data collected from 17 different locations under the collaborative Time Averaged geomagnetic Field Initiative (TAFI). When combined with regional compilations from the northwest United States, the southwest United States, Japan, New Zealand, Hawaii, Mexico, South Pacific, and the Indian Ocean, a data set of over 2000 sites with high quality, stable polarity, and declination and inclination measurements is obtained. This is a more than sevenfold increase over similar quality data in the existing Paleosecular Variation of Recent Lavas (PSVRL) data set, and has greatly improved spatial sampling. The new data set spans 78°S to 53°N, and has sufficient temporal and spatial sampling to allow characterization of latitudinal variations in the time-averaged field (TAF) and paleosecular variation (PSV) for the Brunhes and Matuyama chrons, and for the 0–5 Ma interval combined. The Brunhes and Matuyama chrons exhibit different TAF geometries, notably smaller departures from a geocentric axial dipole field during the Brunhes, consistent with higher dipole strength observed from paleointensity data. Geographical variations in PSV are also different for the Brunhes and Matuyama. Given the high quality of our data set, polarity asymmetries in PSV and the TAF cannot be attributed to viscous overprints, but suggest different underlying field behavior, perhaps related to the influence of long-lived core-mantle boundary conditions on core flow. PSV, as measured by dispersion of virtual geomagnetic poles, shows less latitudinal variation than predicted by current statistical PSV models, or by previous data sets. In particular, the Brunhes data reported here are compatible with a wide range of models, from those that predict constant dispersion as a function of latitude to those that predict an increase in dispersion with latitude. Discriminating among such models could be helped by increased numbers of low-latitude data and new high northern latitude sites. Tests with other data sets, and with simulations, indicate that some of the latitudinal signature previously observed in VGP dispersion can be attributed to the inclusion of low-quality, insufficiently cleaned data with too few samples per site. Our Matuyama data show a stronger dependence of dispersion on latitude than the Brunhes data. The TAF is examined using the variation of inclination anomaly with latitude. Best fit two-parameter models have axial quadrupole contributions of 2–4% of the axial dipole term, and axial octupole contributions of 1–5%. Approximately 2% of the octupole signature is likely the result of bias incurred by averaging unit vectors.


Science | 2008

The Structure of Mercury's Magnetic Field from MESSENGER's First Flyby

Brian J. Anderson; Mario H. Acuna; Haje Korth; Michael E. Purucker; C. L. Johnson; James A. Slavin; Sean C. Solomon; Ralph L. McNutt

During its first flyby of Mercury, the MESSENGER spacecraft measured the planets near-equatorial magnetic field. The field strength is consistent to within an estimated uncertainty of 10% with that observed near the equator by Mariner 10. Centered dipole solutions yield a southward planetary moment of 230 to 290 nanotesla RM3 (where RM is Mercurys mean radius) tilted between 5° and 12° from the rotation axis. Multipole solutions yield non-dipolar contributions of 22% to 52% of the dipole field magnitude. Magnetopause and tail currents account for part of the high-order field, and plasma pressure effects may explain the remainder, so that a pure centered dipole cannot be ruled out.


Journal of Geophysical Research | 1995

Evidence for diffuse extension of the Pacific Plate from Pukapuka ridges and cross‐grain gravity lineations

David T. Sandwell; Edward L. Winterer; Jacqueline Mammerickx; Robert A. Duncan; Mary Ann Lynch; Daniel A. Levitt; C. L. Johnson

Satellite altimeter measurements of marine gravity reveal 100 to 200-km wavelength lineations over a wide area of the Pacific plate oriented roughly in the direction of absolute plate motion. At least three mechanisms have been proposed for their origin: small-scale convective rolls aligned in the direction of absolute plate motion by shear in the asthenosphere; diffuse N-S extension of the lithosphere resulting in lineated zones of extension (boudins); and minihotspots that move slowly with respect to major hotspots and produce intermittent volcanism. Recently, several chains of linear volcanic ridges have been found to be associated with the gravity lineations. Following ridgelike gravity signatures apparent in high-resolution Geosat gravity measurements, we surveyed a series of volcanic ridges that extend northwest from the East Pacific Rise flank for 2600 km onto 40 Ma seafloor. Our survey data, as well as radiometric dates on samples we collected from the ridges, provide tight constraints on their origin: (1) Individual ridge segments and sets of ridges are highly elongate in the direction of present absolute plate motion. (2) The ridges formed along a band 50 to 70-km-wide in the trough of one of the more prominent gravity lineations. (3) Radiometric dates of the largest ridges show no hotspot age progression. Moreover, the directions predicted for minihotspot traces older than 24 Ma do not match observed directions of either the gravity lineations or the ridges. Based on this last observation, we reject the minihotspot model. The occurrence of the ridges in the trough of the gravity lineation is incompatible with the small-scale convection model which would predict increased volcanism above the convective upwelling. We favor the diffuse extension model because it is consistent with the occurrence of ridges in the trough above the more highly extended lithosphere. However, the multibeam data show no evidence for widespread normal faulting of the crust as predicted by the model. Perhaps the fault scarps are buried under more than 30 m of sediments and/or covered by the elongated ridges. Finally, we note that if ridge-push force is much smaller than trench-pull force, then near the ridge axis the direction of maximum tensile stress must be perpendicular to the direction of absolute plate motion.


Science | 2012

Topography of the Northern Hemisphere of Mercury from MESSENGER Laser Altimetry

Maria T. Zuber; David E. Smith; Roger J. Phillips; Sean C. Solomon; Gregory A. Neumann; Steven A. Hauck; Stanton J. Peale; Olivier S. Barnouin; James W. Head; C. L. Johnson; Frank G. Lemoine; Erwan Mazarico; Xiaoli Sun; Mark H. Torrence; Andrew M. Freed; Christian Klimczak; Jean-Luc Margot; Jürgen Oberst; Mark E. Perry; Ralph L. McNutt; Jeffrey A. Balcerski; Nathalie Michel; Matthieu J. Talpe; Di Yang

Mercury Inside and Out The MESSENGER spacecraft orbiting Mercury has been in a ∼12-hour eccentric, near-polar orbit since 18 March 2011 (see the Perspective by McKinnon). Smith et al. (p. 214, published online 21 March) present the most recent determination of Mercurys gravity field, based on radio tracking of the MESSENGER spacecraft between 18 March and 23 August 2011. The results point to an interior structure that differs from those of the other terrestrial planets: the density of the planets solid outer shell suggests the existence of a deep reservoir of high-density material, possibly an Fe-S layer. Zuber et al. (p. 217, published online 21 March) used data obtained by the MESSENGER laser altimeter through to 24 October 2011 to build a topographic map of Mercurys northern hemisphere. The map shows less variation in elevation, compared with Mars or the Moon, and its features add to the body of evidence that Mercury has sustained geophysical activity for much of its history. Mercury’s topography indicates sustained geophysical activity for most of the planet’s geological history. Laser altimetry by the MESSENGER spacecraft has yielded a topographic model of the northern hemisphere of Mercury. The dynamic range of elevations is considerably smaller than those of Mars or the Moon. The most prominent feature is an extensive lowland at high northern latitudes that hosts the volcanic northern plains. Within this lowland is a broad topographic rise that experienced uplift after plains emplacement. The interior of the 1500-km-diameter Caloris impact basin has been modified so that part of the basin floor now stands higher than the rim. The elevated portion of the floor of Caloris appears to be part of a quasi-linear rise that extends for approximately half the planetary circumference at mid-latitudes. Collectively, these features imply that long-wavelength changes to Mercury’s topography occurred after the earliest phases of the planet’s geological history.


Philosophical Transactions of the Royal Society A | 2000

Global geomagnetic field models for the past 3000 years: transient or permanent flux lobes?

Catherine Constable; C. L. Johnson; Steven P. Lund

PSVMOD1.0 is a compilation of globally distributed palaeodirectional data from archaeomagnetic artefacts, lava flows, and lake sediments at 24 sites evaluated at 100 year intervals from 1000 BC to AD 1800. We estimate uncertainty in these measures of declination and inclination by comparison with predictions from standard historical models in time–intervals of overlap, and use the 100–year samples and their associated uncertainties to construct a sequence of minimum structure global geomagnetic field models. Global predictions of radial magnetic field at the coremantle boundary (CMB), as well as inclination and declination anomalies at the Earths surface, provide an unprecedented view of geomagnetic secular variations over the past 3000 years, and demonstrate a consistent evolution of the field with time. Resolution of the models is poorest in the Southern Hemisphere, where only six of the 24 sites are located, several with incomplete temporal coverage. Low–flux regions seen in the historical field near the North Pole are poorly resolved, but the Northern Hemisphere flux lobes are clearly visible in the models. These lobes are not fixed in position and intensity, but they only rarely venture into the Pacific hemisphere. The Pacific region is seen to have experienced significant secular variation: a strong negative inclination anomaly in the region, like that seen in 0–5 Ma models, persists from 1000 BC until AD 1000 and then gradually evolves into the smaller positive anomaly seen today. On average between 1000 BC and AD 1800, the non–axial–dipole contribution to the radial magnetic field at the core–mantle boundary is largest in the north–central Pacific, and beneath Central Asia, with clear non–zonal contributions. At the Earths surface, average inclination anomalies are large and negative in the central Pacific, and most positive slightly to the east of Central Africa. Inclination anomalies decrease with increasing latitude. Average declinations are smallest in equatorial regions, again with strong longitudinal variations, largest negative departures are centred over Australia and Eastern Asia. Secular variation at the Earths surface is quantified by standard deviation of inclination and declination about their average values, and at the CMB by standard deviation in radial magnetic field. All three show significant geographical variations, but appear incompatible with the idea that secular variation in the Pacific hemisphere is permanently attenuated by greatly enhanced conductivity in D00 beneath the region.


Earth and Planetary Science Letters | 1998

40Ar/39Ar ages and paleomagnetism of São Miguel lavas, Azores

C. L. Johnson; Jan R. Wijbrans; Catherine Constable; Jeffrey S. Gee; Hubert Staudigel; Lisa Tauxe; Victor-H. Forjaz; Mário Salgueiro

We present new 40 Ar= 39 Ar ages and paleomagnetic data for Sao Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. 40 Ar= 39 Ar age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K-Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across Sao Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The 40 Ar= 39 Ar ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0-0.1 Ma) and up to 0.78 Myr (0-0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78-0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction.


Philosophical Transactions of the Royal Society A | 1996

Palaeosecular variation recorded by lava flows over the past five million years

C. L. Johnson; Catherine Constable

We present a new global palaeomagnetic database, comprising lava flows and thin intrusive bodies, suitable for studying palaeosecular variation and the time-averaged field. The database is presented in some detail in the appendix and is available on-line from the authors. We review palaeosecular variation models to date, emphasizing the assumptions required and the rather arbitrary construction of many of these models. Preliminary studies of the statistical properties of the new database suggest that existing palaeosecular variation models are inadequate to explain the long-term temporal variations in the field. It is increasingly apparent that data distribution and quality are pivotal in determining the characteristics of the secular variation. The work presented here demonstrates the need for revised models of the time-averaged field structure for both normal and reverse polarities before reliable models for palaeosecular variation can be made.

Collaboration


Dive into the C. L. Johnson's collaboration.

Top Co-Authors

Avatar

Sean C. Solomon

Lamont–Doherty Earth Observatory

View shared research outputs
Top Co-Authors

Avatar

Haje Korth

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger J. Phillips

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria T. Zuber

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reka M. Winslow

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Ralph L. McNutt

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge