Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. L. Mueller is active.

Publication


Featured researches published by C. L. Mueller.


Physical Review Letters | 2015

Observation of Parametric Instability in Advanced LIGO

M. Evans; Slawek Gras; P. Fritschel; John B. Miller; L. Barsotti; D. V. Martynov; A. F. Brooks; D. C. Coyne; R. Abbott; R. Adhikari; Koji Arai; Rolf Bork; Bill Kells; J. G. Rollins; N. D. Smith-Lefebvre; G. Vajente; Hiroaki Yamamoto; C. Adams; S. M. Aston; Joseph Betzweiser; V. V. Frolov; Adam Mullavey; A. Pele; J. H. Romie; M. Thomas; Keith Thorne; S. Dwyer; K. Izumi; Keita Kawabe; D. Sigg

Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress.


Review of Scientific Instruments | 2016

The advanced LIGO input optics

C. L. Mueller; M. A. Arain; G. Ciani; R. T. Derosa; A. Effler; D. Feldbaum; V. V. Frolov; P. Fulda; J. Gleason; M. C. Heintze; Keita Kawabe; E. J. King; K. Kokeyama; W. Z. Korth; R. M. Martin; A. Mullavey; Jan Peold; V. Quetschke; D. H. Reitze; D. B. Tanner; C. Vorvick; L. Williams; G. Mueller

The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.


Classical and Quantum Gravity | 2015

In situ characterization of the thermal state of resonant optical interferometers via tracking of their higher-order mode resonances

C. L. Mueller; P. Fulda; R. Adhikari; Koji Arai; A. F. Brooks; R. Chakraborty; V. V. Frolov; P. Fritschel; E. J. King; D. B. Tanner; Hiroaki Yamamoto; G. Mueller

Thermal lensing in resonant optical interferometers such as those used for gravitational wave detection is a concern due to the negative impact on control signals and instrument sensitivity. In this paper we describe a method for monitoring the thermal state of such interferometers by probing the higher-order spatial mode resonances of the cavities within them. We demonstrate the use of this technique to measure changes in the advanced LIGO (aLIGO) input mode cleaner cavity geometry as a function of input power, and subsequently infer the optical absorption at the mirror surfaces at the level of 1 ppm per mirror. We also demonstrate the generation of a useful error signal for the thermal state of the aLIGO power recycling cavity by continuously tracking the first order spatial mode resonance frequency. Such an error signal could be used as an input to thermal compensation systems to maintain the interferometer cavity geometries in the presence of transients in circulating light power levels, thereby maintaining optimal sensitivity and maximizing the duty-cycle of the detectors.


Applied Optics | 2017

Alignment sensing for optical cavities using radio-frequency jitter modulation

P. Fulda; D. V. Voss; C. L. Mueller; L. F. Ortega; G. Ciani; G. Mueller; D. B. Tanner

Alignment sensing is often required in precision interferometry applications such as Advanced LIGO in order to achieve the optimum performance. Currently favored sensing schemes rely on the use of two separate radio-frequency (RF) quadrant photodetectors and Gouy phase telescopes to determine the alignment of a beam relative to an optical cavity axis. In this paper, we demonstrate an alternative sensing scheme that has potential advantages over the current standard schemes. We show that by using electro-optic beam deflectors to impose RF jitter sidebands on a beam, it is possible to extract full alignment signals for two in-line optical cavities from just one single-element photodetector in reflection of each cavity.


Review of Scientific Instruments | 2016

Small optic suspensions for Advanced LIGO input optics and other precision optical experiments

G. Ciani; M. A. Arain; S. Aston; D. Feldbaum; P. Fulda; J. Gleason; M. C. Heintze; R. M. Martin; C. L. Mueller; D. Nanda Kumar; A. Pele; D. H. Reitze; P. Sainathan; D. B. Tanner; L. Williams; G. Mueller

We report on the design and performance of small optic suspensions developed to suppress seismic motion of out-of-cavity optics in the input optics subsystem of the Advanced Laser Interferometer Gravitational Wave Observatory. These compact single stage suspensions provide isolation in all six degrees of freedom of the optic, local sensing and actuation in three of them, and passive damping for the other three.


Bulletin of the American Physical Society | 2016

The input optics of Advanced LIGO

D. B. Tanner; Arain; G. Ciani; D. Feldbaum; P. Fulda; J. Gleason; R. Goetz; M. C. Heintze; R. M. Martin; C. L. Mueller; L. Williams; G. Mueller; V. Quetschke; W. Z. Korth; D. H. Reitze; R. T. Derosa; A. Effler; K. Kokeyama; V. V. Frolov; A. Mullavey; J. Poeld


日本物理学会講演概要集 | 2015

22aDJ-3 重力波検出器用の光アイソレーターの開発

優 片岡; 健太郎 宗宮; 和城 矢野; David B. Tanner; G. Mueller; R. M. Martin; C. L. Mueller; Ryan Goetz; 雅之 中野; 智忠 阿久津

Collaboration


Dive into the C. L. Mueller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Fulda

University of Florida

View shared research outputs
Top Co-Authors

Avatar

G. Ciani

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. V. Frolov

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

D. Feldbaum

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge