Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Logan Mackay is active.

Publication


Featured researches published by C. Logan Mackay.


Analytical Chemistry | 2011

Qualitative and Quantitative MALDI Imaging of the Positron Emission Tomography Ligands Raclopride (a D2 Dopamine Antagonist) and SCH 23390 (a D1 Dopamine Antagonist) in Rat Brain Tissue Sections Using a Solvent-Free Dry Matrix Application Method

Richard J. A. Goodwin; C. Logan Mackay; Anna Nilsson; David J. Harrison; Lars Farde; Per E. Andrén; Suzanne L. Iverson

The distributions of positron emission tomography (PET) ligands in rat brain tissue sections were analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). The detection of the PET ligands was possible following the use of a solvent-free dry MALDI matrix application method employing finely ground dry α-cyano-4-hydroxycinnamic acid (CHCA). The D2 dopamine receptor antagonist 3,5-dichloro-N-{[(2S)-1-ethylpyrrolidin-2-yl]methyl}-2-hydroxy-6-methoxybenzamide (raclopride) and the D1 dopamine receptor antagonist 7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol (SCH 23390) were both detected at decreasing abundance at increasing period postdosing. Confirmation of the compound identifications and distributions was achieved by a combination of mass-to-charge ratio accurate mass, isotope distribution, and MS/MS fragmentation imaging directly from tissue sections (performed using MALDI TOF/TOF, MALDI q-TOF, and 12T MALDI-FT-ICR mass spectrometers). Quantitative data was obtained by comparing signal abundances from tissues to those obtained from quantitation control spots of the target compound applied to adjacent vehicle control tissue sections (analyzed during the same experiment). Following a single intravenous dose of raclopride (7.5 mg/kg), an average tissue concentration of approximately 60 nM was detected compared to 15 nM when the drug was dosed at 2 mg/kg, indicating a linear response between dose and detected abundance. SCH 23390 was established to have an average tissue concentration of approximately 15 μM following a single intravenous dose at 5 mg/kg. Both target compounds were also detected in kidney tissue sections when employing the same MSI methodology. This study illustrates that a MSI may well be readily applied to PET ligand research development when using a solvent-free dry matrix coating.


Journal of the American Society for Mass Spectrometry | 2009

Precursor Ion Independent Algorithm for Top-Down Shotgun Proteomics

Yihsuan S. Tsai; Alexander Scherl; Jason L. Shaw; C. Logan Mackay; Scott A. Shaffer; Patrick R. R. Langridge-Smith; David R. Goodlett

We present a precursor ion independent top-down algorithm (PIITA) for use in automated assignment of protein identifications from tandem mass spectra of whole proteins. To acquire the data, we utilize data-dependent acquisition to select protein precursor ions eluting from a C4-based HPLC column for collision induced dissociation in the linear ion trap of an LTQ-Orbitrap mass spectrometer. Gas-phase fractionation is used to increase the number of acquired tandem mass spectra, all of which are recorded in the Orbitrap mass analyzer. To identify proteins, the PIITA algorithm compares deconvoluted, deisotoped, observed tandem mass spectra to all possible theoretical tandem mass spectra for each protein in a genomic sequence database without regard for measured parent ion mass. Only after a protein is identified, is any difference in measured and theoretical precursor mass used to identify and locate post-translation modifications. We demonstrate the application of PIITA to data generated via our wet-lab approach on a Salmonella typhimurium outer membrane extract and compare these results to bottom-up analysis. From these data, we identify 154 proteins by top-down analysis, 73 of which were not identified in a parallel bottom-up analysis. We also identify 201 unique isoforms of these 154 proteins at a false discovery rate (FDR) of <1%.


Analytical Chemistry | 2014

Mass Spectrometry Imaging of Cassette-Dosed Drugs for Higher Throughput Pharmacokinetic and Biodistribution Analysis

John G. Swales; James W. Tucker; Nicole Strittmatter; Anna Nilsson; Diego Cobice; Malcolm R. Clench; C. Logan Mackay; Per E. Andrén; Zoltan Takats; Peter J. H. Webborn; Richard J. A. Goodwin

Cassette dosing of compounds for preclinical drug plasma pharmacokinetic analysis has been shown to be a powerful strategy within the pharmaceutical industry for increasing throughput while decreasing the number of animals used. Presented here for the first time is data on the application of a cassette dosing strategy for label-free tissue distribution studies. The aim of the study was to image the spatial distribution of eight nonproprietary drugs (haloperidol, bufuralol, midazolam, clozapine, terfenadine, erlotinib, olanzapine, and moxifloxacin) in multiple tissues after oral and intravenous cassette dosing (four compounds per dose route). An array of mass spectrometry imaging technologies, including matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI), liquid extraction surface analysis tandem mass spectrometry (LESA-MS/MS), and desorption electrospray ionization mass spectrometry (DESI-MS) was used. Tissue analysis following intravenous and oral administration of discretely and cassette-dosed compounds demonstrated similar relative abundances across a range of tissues indicating that a cassette dosing approach was applicable. MALDI MSI was unsuccessful in detecting all of the target compounds; therefore, DESI MSI, a complementary mass spectrometry imaging technique, was used to detect additional target compounds. In addition, by adapting technology used for tissue profiling (LESA-MS/MS) low spatial resolution mass spectrometry imaging (∼1 mm) was possible for all targets across all tissues. This study exemplifies the power of multiplatform MSI analysis within a pharmaceutical research and development (R&D) environment. Furthermore, we have illustrated that the cassette dosing approach can be readily applied to provide combined, label-free pharmacokinetic and drug distribution data at an early stage of the drug discovery/development process while minimizing animal usage.


Journal of the American Society for Mass Spectrometry | 2011

Mapping a Noncovalent Protein–Peptide Interface by Top-Down FTICR Mass Spectrometry Using Electron Capture Dissociation

David J. Clarke; Euan Murray; Ted R. Hupp; C. Logan Mackay; Pat R. R. Langridge-Smith

Noncovalent protein–ligand and protein–protein complexes are readily detected using electrospray ionization mass spectrometry (ESI MS). Furthermore, recent reports have demonstrated that careful use of electron capture dissociation (ECD) fragmentation allows covalent backbone bonds of protein complexes to be dissociated without disruption of noncovalent protein–ligand interactions. In this way the site of protein–ligand interfaces can be identified. To date, protein–ligand complexes, which have proven tractable to this technique, have been mediated by ionic electrostatic interactions, i.e., ion pair interactions or salt bridging. Here we extend this methodology by applying ECD to study a protein–peptide complex that contains no electrostatics interactions. We analyzed the complex between the 21 kDa p53-inhibitor protein anterior gradient-2 and its hexapeptide binding ligand (PTTIYY). ECD fragmentation of the 1:1 complex occurs with retention of protein–peptide binding and analysis of the resulting fragments allows the binding interface to be localized to a C-terminal region between residues 109 and 175. These finding are supported by a solution-phase competition assay, which implicates the region between residues 108 and 122 within AGR2 as the PTTIYY binding interface. Our study expands previous findings by demonstrating that top-down ECD mass spectrometry can be used to determine directly the sites of peptide–protein interfaces. This highlights the growing potential of using ECD and related top-down fragmentation techniques for interrogation of protein–protein interfaces.


Journal of Proteomics | 2012

Conductive carbon tape used for support and mounting of both whole animal and fragile heat-treated tissue sections for MALDI MS imaging and quantitation.

Richard J. A. Goodwin; Anna Nilsson; Daniel Borg; Pat R. R. Langridge-Smith; David J. Harrison; C. Logan Mackay; Suzanne L. Iverson; Per E. Andrén

Analysis of whole animal tissue sections by MALDI MS imaging (MSI) requires effective sample collection and transfer methods to allow the highest quality of in situ analysis of small or hard to dissect tissues. We report on the use of double-sided adhesive conductive carbon tape during whole adult rat tissue sectioning of carboxymethyl cellulose (CMC) embedded animals, with samples mounted onto large format conductive glass and conductive plastic MALDI targets, enabling MSI analysis to be performed on both TOF and FT-ICR MALDI mass spectrometers. We show that mounting does not unduly affect small molecule MSI detection by analyzing tiotropium abundance and distribution in rat lung tissues, with direct on-tissue quantitation achieved. Significantly, we use the adhesive tape to provide support to embedded delicate heat-stabilized tissues, enabling sectioning and mounting to be performed that maintained tissue integrity on samples that had previously been impossible to adequately prepare section for MSI analysis. The mapping of larger peptidomic molecules was not hindered by tape mounting samples and we demonstrate this by mapping the distribution of PEP-19 in both native and heat-stabilized rat brains. Furthermore, we show that without heat stabilization PEP-19 degradation fragments can detected and identified directly by MALDI MSI analysis.


Journal of the American Society for Mass Spectrometry | 2011

Identification of Two Reactive Cysteine Residues in the Tumor Suppressor Protein p53 Using Top-Down FTICR Mass Spectrometry

Jenna Scotcher; David J. Clarke; Stefan Weidt; C. Logan Mackay; Ted R. Hupp; Peter J. Sadler; Pat R. R. Langridge-Smith

The tumor suppressor p53 is a redox-regulated transcription factor involved in cell cycle arrest, apoptosis and senescence in response to multiple forms of stress, as well as many other cellular processes such as DNA repair, glycolysis, autophagy, oxidative stress and differentiation. The discovery of cysteine-targeting compounds that cause re-activation of mutant p53 and the death of tumor cells in vivo has emphasized the functional importance of p53 thiols. Using a combination of top-down and middle-down FTICR mass spectrometry, we show that of the 10 Cys residues in the core domain of wild-type p53, Cys182 and Cys277 exhibit a remarkable preference for modification by the alkylating reagent N-ethylmaleimide. The assignment of Cys182 and Cys277 as the two reactive Cys residues was confirmed by site-directed mutagenesis. Further alkylation of p53 beyond Cys182 and Cys277 was found to trigger co-operative modification of the remaining seven Cys residues and protein unfolding. This study highlights the power of top-down FTICR mass spectrometry for analysis of the cysteine reactivity and redox chemistry in multiple cysteine-containing proteins.


Rapid Communications in Mass Spectrometry | 2011

Matrix-free mass spectrometric imaging using laser desorption ionisation Fourier transform ion cyclotron resonance mass spectrometry.

Richard J. A. Goodwin; Andrew R. Pitt; David J. Harrison; Stefan Weidt; Pat R. R. Langridge-Smith; Michael P. Barrett; C. Logan Mackay

Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions. Copyright


Journal of the American Society for Mass Spectrometry | 2008

Identification of clusters from reactions of ruthenium arene anticancer complex with glutathione using nanoscale liquid chromatography fourier transform ion cyclotron mass spectrometry combined with 18O-labeling

Fuyi Wang; Stefan Weidt; Jingjing Xu; C. Logan Mackay; Pat R. R. Langridge-Smith; Peter J. Sadler

Reactions of the anticancer complex [(η6-bip)Ru(en)Cl]+ (where bip is biphenyl and en is ethylenediamine) with the tripeptide glutathione (γ-l-Glu-l-Cys-Gly; GSH), the abundant intracellular thiol, in aqueous solution give rise to two ruthenium cluster complexes, which could not be identified by electrospray mass spectrometry (ESI-MS) using a quadrupole mass analyzer. Here we use Fourier transform ion cyclotron mass spectrometry (nanoLC-FT-ICR MS) to identify the clusters separated by nanoscale liquid chromatography as the tetranuclear complex [{(η6-bip)Ru(GSO2)}4]2− (2) and dinuclear complex [{(η6-bip)Ru(GSO2)2}2]8− (3) containing glutathione sulfinate (GSO2) ligands. Use of 18OH2 showed that oxygen from water can readily be incorporated into the oxidized glutathione ligands. These data illustrate the power of high-resolution MS for identifying highly charged multinuclear complexes and elucidating novel reaction pathways for metallodrugs, including ligand-based redox reactions.


Biochemistry | 2010

Subdivision of the bacterioferritin comigratory protein family of bacterial peroxiredoxins based on catalytic activity.

David J. Clarke; Ximena Ortega; C. Logan Mackay; Miguel A. Valvano; John R. W. Govan; Dominic J. Campopiano; Pat R. R. Langridge-Smith; Alan R. Brown

Peroxiredoxins are ubiquitous proteins that catalyze the reduction of hydroperoxides, thus conferring resistance to oxidative stress. Using high-resolution mass spectrometry, we recently reclassified one such peroxiredoxin, bacterioferritin comigratory protein (BCP) of Escherichia coli, as an atypical 2-Cys peroxiredoxin that functions through the formation of an intramolecular disulfide bond between the active and resolving cysteine. An engineered E. coli BCP, which lacked the resolving cysteine, retained enzyme activity through a novel catalytic pathway. Unlike the active cysteine, the resolving cysteine of BCP peroxiredoxins is not conserved across all members of the family. To clarify the catalytic mechanism of native BCP enzymes that lack the resolving cysteine, we have investigated the BCP homologue of Burkholderia cenocepacia. We demonstrate that the B. cenocepacia BCP (BcBCP) homologue functions through a 1-Cys catalytic pathway. During catalysis, BcBCP can utilize thioredoxin as a reductant for the sulfenic acid intermediate. However, significantly higher peroxidase activity is observed utilizing glutathione as a resolving cysteine and glutaredoxin as a redox partner. Introduction of a resolving cysteine into BcBCP changes the activity from a 1-Cys pathway to an atypical 2-Cys pathway, analogous to the E. coli enzyme. In contrast to the native B. cenocepacia enzyme, thioredoxin is the preferred redox partner for this atypical 2-Cys variant. BCP-deficient B. cenocepacia exhibit a growth-phase-dependent hypersensitivity to oxidative killing. On the basis of sequence alignments, we believe that BcBCP described herein is representative of the major class of bacterial BCP peroxiredoxins. To our knowledge, this is the first detailed characterization of their catalytic activity. These studies support the subdivision of the BCP family of peroxiredoxins into two classes based on their catalytic activity.


Protein and Peptide Letters | 2009

Efficient Production of Human β-Defensin 2 (HBD2) in Escherichia coli

Thomas Vargues; Gareth J. Morrison; Emily S. Seo; David J. Clarke; Helen L. Fielder; Julien Bennani; Uday Pathania; Fiona Kilanowski; Julia R. Dorin; John R. W. Govan; C. Logan Mackay; Dušan Uhrín; Dominic J. Campopiano

Human β-defensin 2 (HBD2) has been shown to interact with pathogenic bacteria and components of the mammalian innate and adaptive immune response. We describe a quick and reliable method for the production of HBD2 in Escherichia coli. HBD2 was expressed as an insoluble fusion, chemically cleaved and oxidised to give a single, folded HBD2 β-isoform. The purified peptide was analysed by high resolution mass spectrometry, displayed a well-dispersed H NMR spectrum, was a chemoattractant to HEK293 cells expressing CCR6 and acted as an antimicrobial agent against E. coli, P. aeruginosa, C. albicans and S. aureus.

Collaboration


Dive into the C. Logan Mackay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge