Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C Lu is active.

Publication


Featured researches published by C Lu.


Plant Biotechnology Journal | 2010

Plant responses to cold: transcriptome analysis of wheat

Mark O. Winfield; C Lu; Ian D. Wilson; Jane A. Coghill; Keith J. Edwards

Temperature and light are important environmental stimuli that have a profound influence on the growth and development of plants. Wheat varieties can be divided on the basis of whether they require an extended period of cold to flower (vernalization). Varieties that have a requirement for vernalization also tend to be winter hardy and are able to withstand quite extreme subzero temperatures. This capacity, however, is not constitutive and plants require a period of exposure to low, non-freezing temperatures to acquire freezing tolerance: this process is referred to as cold acclimation. Cold acclimation and the acquisition of freezing tolerance require the orchestration of many different, seemingly disparate physiological and biochemical changes. These changes are, at least in part, mediated through the differential expression of many genes. Some of these genes code for effector molecules that participate directly to alleviate stress. Others code for proteins involved in signal transduction or transcription factors that control the expression of further banks of genes. In this review, we provide an overview of some of the main features of cold acclimation with particular focus on transcriptome reprogramming. In doing so, we highlight some of the important differences between cold-hardy and cold-sensitive varieties. An understanding of these processes is of great potential importance because cold and freezing stress are major limiting factors for growing crop plants and periodically account for significant losses in plant productivity.


Plant Cell Reports | 2012

An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato

Yu Pan; Graham B. Seymour; C Lu; Zongli Hu; Xuqing Chen; Guoping Chen

A novel member of the AP2/ERF transcription factor family, SlERF5, was identified from a tomato mature leaf cDNA library screen. The complete DNA sequence of SlERF5 encodes a putative 244-amino acid DNA-binding protein which most likely acts as a transcriptional regulator and is a member of the ethylene responsive factor (ERF) superfamily. Analysis of the deduced SlERF5 protein sequence showed that it contained an ERF domain and belonged to the class III group of ERFs proteins. Expression of SlERF5 was induced by abiotic stress, such as high salinity, drought, flooding, wounding and cold temperatures. Over-expression of SlERF5 in transgenic tomato plants resulted in high tolerance to drought and salt stress and increased levels of relative water content compared with wild-type plants. This study indicates that SlERF5 is mainly involved in the responses to abiotic stress in tomato.


The Plant Cell | 2001

Developmental Abnormalities and Reduced Fruit Softening in Tomato Plants Expressing an Antisense Rab11 GTPase Gene

C Lu; Zamri Zainal; Gregory A. Tucker; Grantley W. Lycett

A cDNA clone from tomato fruit encodes a protein with strong homology with the rab11/YPT3 class of small GTPases that is thought to be involved in the control of protein trafficking within cells. The gene, LeRab11a, showed a pattern consistent with a single copy in DNA gel blots. The corresponding mRNA was developmentally regulated during fruit ripening, and its expression was inhibited in several ripening mutants. Its reduced expression in the Never-ripe mutant indicates that it may be induced by ethylene in fruit. The ripening-induced expression in tissues that are undergoing cell wall loosening immediately suggests a possible role in trafficking of cell wall–modifying enzymes. The message also was produced in leaves and flowers but not in roots. Antisense transformation was used to generate a “mutant phenotype.” Antisense fruit changed color as expected but failed to soften normally. This was accompanied by reduced levels of two cell wall hydrolases, pectinesterase and polygalacturonase. There were other phenotypic effects in the plants, including determinate growth, reduced apical dominance, branched inflorescences, abnormal floral structure, and ectopic shoots on the leaves. In some plants, ethylene production was reduced. These data suggest an alternative or additional role in exocytosis or endocytosis of homeotic proteins, hormone carriers, or receptors.


BMC Plant Biology | 2009

Cold- and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth.

Mark O. Winfield; C Lu; Ian D. Wilson; Jane A. Coghill; Keith J. Edwards

BackgroundFor plants to flower at the appropriate time, they must be able to perceive and respond to various internal and external cues. Wheat is generally a long-day plant that will go through phase transition from vegetative to floral growth as days are lengthening in spring and early summer. In addition to this response to day-length, wheat cultivars may be classified as either winter or spring varieties depending on whether they require to be exposed to an extended period of cold in order to become competent to flower. Using a growth regime to mimic the conditions that occur during a typical winter in Britain, and a microarray approach to determine changes in gene expression over time, we have surveyed the genes of the major pathways involved in floral transition. We have paid particular attention to wheat orthologues and functional equivalents of genes involved in the phase transition in Arabidopsis. We also surveyed all the MADS-box genes that could be identified as such on the Affymetrix genechip wheat genome array.ResultsWe observed novel responses of several genes thought to be of major importance in vernalisation-induced phase transition, and identified several MADS-box genes that might play an important role in the onset of flowering. In addition, we saw responses in genes of the Gibberellin pathway that would indicate that this pathway also has some role to play in phase transition.ConclusionPhase transition in wheat is more complex than previously reported, and there is evidence that day-length has an influence on genes that were once thought to respond exclusively to an extended period of cold.


Plant Physiology | 2013

Network Inference Analysis Identifies an APRR2-Like Gene Linked to Pigment Accumulation in Tomato and Pepper Fruits

Yu Pan; Glyn Bradley; Kevin A. Pyke; Graham Ball; C Lu; Rupert G. Fray; Alexandra Marshall; Subhalai Jayasuta; Charles Baxter; Rik van Wijk; Laurie Boyden; Rebecca Cade; Natalie H. Chapman; Paul D. Fraser; Charlie Hodgman; Graham B. Seymour

A likely regulator of tomato ripening is identified from a gene network, its function is validated in transgenic plants, and an orthologous gene is shown to play a similar role in pepper. Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening.


Proceedings of the Royal Society of London B: Biological Sciences | 2005

Markedly different gene expression in wheat grown with organic or inorganic fertilizer

C Lu; Malcolm J. Hawkesford; Peter B. Barraclough; P. R. Poulton; Ian D. Wilson; Gary L. A. Barker; Keith J. Edwards

Nitrogen is the major determinant of crop yield and quality and the precise management of nitrogen fertilizer is an important issue for farmers and environmentalists. Despite this, little is known at the level of gene expression about the response of field crops to different amounts and forms of nitrogen fertilizer. Here we use expressed sequence tag (EST)-based wheat microarrays in combination with the oldest continuously running agricultural experiment in the world to show that gene expression is significantly influenced by the amount and form of nitrogenous fertilizer. In the Broadbalk winter wheat experiment at Rothamsted in the United Kingdom and at three other diverse test sites, we show that specific genes have surprisingly different expression levels in the grain endosperm when nitrogen is supplied either in an organic or an inorganic form. Many of the genes showing differential expression are known to participate in nitrogen metabolism and storage protein synthesis. However, others are of unknown function and therefore represent new leads for future investigation. Our observations show that specific gene expression is diagnostic for use of organic sources of nitrogen fertilizer and may therefore have useful applications in defining the differences between organically and conventionally grown wheat.


Plant Physiology | 2002

Rubisco Small Subunit, Chlorophyll a/b-Binding Protein and Sucrose:Fructan-6-Fructosyl Transferase Gene Expression and Sugar Status in Single Barley Leaf Cells in Situ. Cell Type Specificity and Induction by Light

C Lu; Olga Koroleva; John Farrar; Joseph Gallagher; Christopher J. Pollock; A. Deri Tomos

We describe a highly efficient two-step single-cell reverse transcriptase-polymerase chain reaction technique for analyzing gene expression at the single-cell level. Good reproducibility and a linear dose response indicated that the technique has high specificity and sensitivity for detection and quantification of rare RNA.Actin could be used as an internal standard. The expression of message for Rubisco small subunit (RbcS), chlorophyll a/b-binding protein (Cab), sucrose (Suc):fructan-6-fructosyl transferase (6-SFT), and Actin were measured in individual photosynthetic cells of the barley (Hordeum vulgare) leaf. Only Actin was found in the non-photosynthetic epidermal cells. Cab,RbcS, and 6-SFT genes were expressed at a low level in mesophyll and parenchymatous bundle sheath (BS) cells when sampled from plants held in dark for 40 h. Expression increased considerably after illumination. The amount of 6-SFT,Cab, and RbcS transcript increased more in mesophyll cells than in the parenchymatous BS cells. The difference may be caused by different chloroplast structure and posttranscriptional control in mesophyll and BS cells. When similar single-cell samples were assayed for Suc, glucose, and fructan, there was high correlation between 6-SFT gene expression and Suc and glucose concentrations. This is consistent with Suc concentration being the trigger for transcription. Together with earlier demonstrations that the mesophyll cells have a higher sugar threshold for fructan polymerization, our data may indicate separate control of transcription and enzyme activity. Values for the sugar concentrations of the individual cell types are reported.


Molecular Plant | 2011

OsCAND1 Is Required for Crown Root Emergence in Rice

Xiaofei Wang; Fen-Fang He; Xiaoxia Ma; Chuanzao Mao; Charlie Hodgman; C Lu; Ping Wu

Crown roots are main components of the fibrous root system and important for crops to anchor and absorb water and nutrition. To understand the molecular mechanisms of crown root formation, we isolated a rice mutant defective in crown root emergence designated as Oscand1 (named after the Arabidopsis homologous gene AtCAND1). The defect of visible crown root in the Oscand1 mutant is the result of cessation of the G2/M cell cycle transition in the crown root meristem. Map-based cloning revealed that OsCAND1 is a homolog of Arabidopsis CAND1. During crown root primordium development, the expression of OsCAND1 is confined to the root cap after the establishment of fundamental organization. The transgenic plants harboring DR5::GUS showed that auxin signaling in crown root tip is abnormal in the mutant. Exogenous auxin application can partially rescue the defect of crown root development in Oscand1. Taken together, these data show that OsCAND1 is involved in auxin signaling to maintain the G2/M cell cycle transition in crown root meristem and, consequently, the emergence of crown root. Our findings provide new information about the molecular regulation of the emergence of crown root in rice.


Planta | 2002

Distribution of actin gene isoforms in the Arabidopsis leaf measured in microsamples from intact individual cells

Valérie Laval; Olga A. Koroleva; Elaine C. Murphy; C Lu; Joel J. Milner; Mark A. Hooks; A. Deri Tomos

Abstract. The contents of single plant cells can be sampled using glass microcapillaries. By combining such single-cell sampling with reverse transcription-polymerase chain reaction (RT-PCR), transcripts of individual genes can be identified and, in principle, quantified. This provides a valuable technique for the analysis and quantification of the intercellular distribution of gene expression in complex tissues. In a proof-of-principle study, the cellular locations of the transcripts of the eight isoforms of actin (ACT) expressed in Arabidopsis thaliana (L.) Heynh. were analyzed. Cell sap was extracted from epidermal and mesophyll cells of leaves of 3- to 4-week-old plants. Single-cell (SC)-RT-PCR was used to amplify the actin transcripts using specific primer pairs for ACT1, 2, 3, 4, 7, 8, 11 and 12. Only ACT2 and ACT8 were found in epidermal and in mesophyll cells. In individual trichomes, in addition to ACT2 and ACT8, ACT7 and ACT11 transcripts were detectable. By employing the already well-characterized actin system we demonstrate the practicality and power of SC-RT-PCR as a technique for analyzing gene expression at the ultimate level of resolution, the single cell.


Plant Biotechnology Journal | 2015

Gluten quality of bread wheat is associated with activity of RabD GTPases.

Adam M. Tyler; Dhan G. Bhandari; Mervin Poole; Johnathan A. Napier; Huw D. Jones; C Lu; Grantley W. Lycett

In the developing endosperm of bread wheat (Triticum aestivum), seed storage proteins are produced on the rough endoplasmic reticulum (ER) and transported to protein bodies, specialized vacuoles for the storage of protein. The functionally important gluten proteins of wheat are transported by two distinct routes to the protein bodies where they are stored: vesicles that bud directly off the ER and transport through the Golgi. However, little is known about the processing of glutenin and gliadin proteins during these steps or the possible impact on their properties. In plants, the RabD GTPases mediate ER-to-Golgi vesicle transport. Available sequence information for Rab GTPases in Arabidopsis, rice, Brachypodium and bread wheat was compiled and compared to identify wheat RabD orthologs. Partial genetic sequences were assembled using the first draft of the Chinese Spring wheat genome. A suitable candidate gene from the RabD clade (TaRabD2a) was chosen for down-regulation by RNA interference (RNAi), and an RNAi construct was used to transform wheat plants. All four available RabD genes were shown by qRT-PCR to be down-regulated in the transgenic developing endosperm. The transgenic grain was found to produce flour with significantly altered processing properties when measured by farinograph and extensograph. SE-HPLC found that a smaller proportion of HMW-GS and large proportion of LMW-GS are incorporated into the glutenin macropolymer in the transgenic dough. Lower protein content but a similar protein profile on SDS-PAGE was seen in the transgenic grain.

Collaboration


Dive into the C Lu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Z Bian

Nottingham Trent University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ishan Ajmera

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge