C. M. Copperwheat
Liverpool John Moores University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. M. Copperwheat.
Nature | 2017
Michaël Gillon; A. H. M. J. Triaud; Brice-Olivier Demory; Emmanuel Jehin; Eric Agol; Katherine M. Deck; Susan M. Lederer; Julien de Wit; Artem Burdanov; James G. Ingalls; Emeline Bolmont; Jérémy Leconte; Sean N. Raymond; Franck Selsis; Martin Turbet; Khalid Barkaoui; Adam J. Burgasser; M. R. Burleigh; Sean J. Carey; Aleksander Chaushev; C. M. Copperwheat; Laetitia Delrez; Catarina S. Fernandes; Daniel L. Holdsworth; Enrico J. Kotze; Valérie Van Grootel; Yaseen Almleaky; Z. Benkhaldoun; Pierre Magain; D. Queloz
One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star—named TRAPPIST-1—makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces.
Astronomy and Astrophysics | 2005
Cristina Hemilse Mandrini; Silja Pohjolainen; S. Dasso; Lucie Green; P. Démoulin; L. van Driel-Gesztelyi; C. M. Copperwheat; C. Foley
Using multi-instrument and multi-wavelength observations (SOHO/MDI and EIT, TRACE and Yohkoh/SXT), as well as computing the coronal magnetic field of a tiny bipole combined with modelling of Wind in situ data, we provide evidences for the smallest event ever observed which links a sigmoid eruption to an interplanetary magnetic cloud (MC). The tiny bipole, which was observed very close to the solar disc centre, had a factor one hundred less flux than a classical active region (AR). In the corona it had a sigmoidal structure, observed mainly in EUV, and we found a very high level of non- potentiality in the modelled magnetic field, 10 times higher than we have ever found in any AR. From May 11, 1998, and until its disappearance, the sigmoid underwent three intense impulsive events. The largest of these events had extended EUV dimmings and a cusp. The Wind spacecraft detected 4.5 days later one of the smallest MC ever identified (about a factor one hundred times less magnetic flux in the axial component than that of an average MC). The link between this last eruption and the interplanetary magnetic cloud is supported by several pieces of evidence: good timing, same coronal loop and MC orientation, same magnetic field direction and magnetic helicity sign in the coronal loops and in the MC. We further quantify this link by estimating the magnetic flux (measured in the dimming regions and in the MC) and the magnetic helicity (pre- to post-event change in the solar corona and helicity content of the MC). Within the uncertainties, both magnetic fluxes and helicities are in reasonable agreement, which brings further evidences of their link. These observations show that the ejections of tiny magnetic flux ropes are indeed possible and put new constraints on CME models.
Astronomy and Astrophysics | 2010
K. Beuermann; F. V. Hessman; S. Dreizler; T. R. Marsh; S. G. Parsons; D. E. Winget; G. F. Miller; Matthias R. Schreiber; Wilhelm Kley; V. S. Dhillon; S. P. Littlefair; C. M. Copperwheat; J. J. Hermes
Planets orbiting post-common envelope binaries provide fundamental information on planet formation and evolution. We searched for such planets in NN Ser ab, an eclipsing short-period binary that shows long-term eclipse time variations. Using published, reanalysed, and new mid-eclipse times of NN Ser ab obtained between 1988 and 2010, we find excellent agreement with the light-travel-time effect produced by two additional bodies superposed on the linear ephemeris of the binary. Our multi-parameter fits accompanied by N-body simulations yield a best fit for the objects NN Ser (ab)c and d locked in the 2:1 mean motion resonance, with orbital periods P-c similar or equal to 15.5 yrs and P-d similar or equal to 7.7 yrs, masses M-c sin i(c) similar or equal to 6.9 M-Jup and M-d sin i(d) similar or equal to 2.2 M-Jup, and eccentricities e(c) similar or equal to 0 and e(d) similar or equal to 0.20. A secondary chi(2) minimum corresponds to an alternative solution with a period ratio of 5:2. We estimate that the progenitor binary consisted of an A star with similar or equal to 2 M-circle dot and the present M dwarf secondary at an orbital separation of similar to 1.5 AU. The survival of two planets through the common-envelope phase that created the present white dwarf requires fine tuning between the gravitational force and the drag force experienced by them in the expanding envelope. The alternative is a second-generation origin in a circumbinary disk created at the end of this phase. In that case, the planets would be extremely young with ages not exceeding the cooling age of the white dwarf of 10(6) yrs.
Monthly Notices of the Royal Astronomical Society | 2008
S. P. Littlefair; V. S. Dhillon; T. R. Marsh; B. T. Gänsicke; J. Southworth; Isabelle Baraffe; C. A. Watson; C. M. Copperwheat
We present high-speed, three-colour photometry of seven short-period (P-orb <= 95 min) eclipsing cataclysmic variables (CVs) from the Sloan Digital Sky Survey. We determine the system parameters via a parametrized model of the eclipse fitted to the observed light curve by chi(2) minimization. Three out of seven of the systems possess brown dwarf donor stars and are believed to have evolved past the orbital period minimum. This is in line with the predictions that 40-70 per cent of CVs should have evolved past the orbital period minimum. Therefore, the main result of our study is that the missing population of post-period minimum CVs has finally been identified. The donor star masses and radii are, however, inconsistent with model predictions; the donor stars are approximately 10 per cent larger than expected across the mass range studied here. One explanation for the discrepancy is the enhanced angular momentum loss (e.g. from circumbinary discs); however, the mass-transfer rates, as deduced from white dwarf effective temperatures, are not consistent with enhanced angular momentum loss. We show that it is possible to explain the large donor radii without invoking enhanced angular momentum loss by a combination of geometrical deformation and the effects of starspots due to strong rotation and expected magnetic activity. Choosing unambiguously between these different solutions will require independent estimates of the mass-transfer rates in short-period CVs. The white dwarfs in our sample show a strong tendency towards high masses. We show that this is unlikely to be due to selection effects. The dominance of high-mass white dwarfs in our sample implies that erosion of the white dwarf during nova outbursts must be negligible, or even that white dwarfs grow in mass through the nova cycle. Amongst our sample, there are no helium-core white dwarfs, despite predictions that 30-80 per cent of short-period CVs should contain helium-core white dwarfs. We are unable to rule out selection effects as the cause of this discrepancy.
Science | 2017
Mansi M. Kasliwal; Ehud Nakar; L. P. Singer; David L. Kaplan; David O. Cook; A. Van Sistine; Ryan M. Lau; C. Fremling; O. Gottlieb; Jacob E. Jencson; S. M. Adams; U. Feindt; Kenta Hotokezaka; S. Ghosh; Daniel A. Perley; Po-Chieh Yu; Tsvi Piran; J. R. Allison; G. C. Anupama; A. Balasubramanian; Keith W. Bannister; John Bally; J. Barnes; Sudhanshu Barway; Eric C. Bellm; V. Bhalerao; D. Bhattacharya; N. Blagorodnova; J. S. Bloom; P. R. Brady
GROWTH observations of GW170817 The gravitational wave event GW170817 was caused by the merger of two neutron stars (see the Introduction by Smith). In three papers, teams associated with the GROWTH (Global Relay of Observatories Watching Transients Happen) project present their observations of the event at wavelengths from x-rays to radio waves. Evans et al. used space telescopes to detect GW170817 in the ultraviolet and place limits on its x-ray flux, showing that the merger generated a hot explosion known as a blue kilonova. Hallinan et al. describe radio emissions generated as the explosion slammed into the surrounding gas within the host galaxy. Kasliwal et al. present additional observations in the optical and infrared and formulate a model for the event involving a cocoon of material expanding at close to the speed of light, matching the data at all observed wavelengths. Science, this issue p. 1565, p. 1579, p. 1559; see also p. 1554 Observations of a binary neutron star merger at multiple wavelengths can be explained by an off-axis relativistic cocoon model. Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.
Nature | 2017
E. Pian; Paolo D'Avanzo; Stefano Benetti; M. Branchesi; E. Brocato; S. Campana; Enrico Cappellaro; S. Covino; Valerio D'Elia; J. P. U. Fynbo; F. Getman; G. Ghirlanda; G. Ghisellini; A. Grado; G. Greco; J. Hjorth; C. Kouveliotou; Andrew J. Levan; L. Limatola; Daniele Malesani; Paolo A. Mazzali; A. Melandri; P. Møller; L. Nicastro; Eliana Palazzi; S. Piranomonte; A. Rossi; O. S. Salafia; J. Selsing; G. Stratta
The merger of two neutron stars is predicted to give rise to three major detectable phenomena: a short burst of γ-rays, a gravitational-wave signal, and a transient optical–near-infrared source powered by the synthesis of large amounts of very heavy elements via rapid neutron capture (the r-process). Such transients, named ‘macronovae’ or ‘kilonovae’, are believed to be centres of production of rare elements such as gold and platinum. The most compelling evidence so far for a kilonova was a very faint near-infrared rebrightening in the afterglow of a short γ-ray burst at redshift z = 0.356, although findings indicating bluer events have been reported. Here we report the spectral identification and describe the physical properties of a bright kilonova associated with the gravitational-wave source GW170817 and γ-ray burst GRB 170817A associated with a galaxy at a distance of 40 megaparsecs from Earth. Using a series of spectra from ground-based observatories covering the wavelength range from the ultraviolet to the near-infrared, we find that the kilonova is characterized by rapidly expanding ejecta with spectral features similar to those predicted by current models. The ejecta is optically thick early on, with a velocity of about 0.2 times light speed, and reaches a radius of about 50 astronomical units in only 1.5 days. As the ejecta expands, broad absorption-like lines appear on the spectral continuum, indicating atomic species produced by nucleosynthesis that occurs in the post-merger fast-moving dynamical ejecta and in two slower (0.05 times light speed) wind regions. Comparison with spectral models suggests that the merger ejected 0.03 to 0.05 solar masses of material, including high-opacity lanthanides.
Monthly Notices of the Royal Astronomical Society | 2010
S. G. Parsons; T. R. Marsh; C. M. Copperwheat; V. S. Dhillon; S. P. Littlefair; R. D. G. Hickman; P. F. L. Maxted; B. T. Gänsicke; E. Unda-Sanzana; J. P. Colque; N. Barraza; N. Sánchez; L. A. G. Monard
We present high-speed ULTRACAM photometry of the eclipsing post-common-envelope binaries DE CVn, GK Vir, NN Ser, QS Vir, RR Cae, RX J2130.6+4710, SDSS 0110+1326 and SDSS 0303+0054 and use these data to measure precise mid-eclipse times in order to detect any period variations. We detect a large (∼250 s) departure from linearity in the eclipse times of QS Vir which Applegates mechanism fails to reproduce by an order of magnitude. The only mechanism able to drive this period change is a third body in a highly elliptical orbit. However, the planetary/sub-stellar companion previously suggested to exist in this system is ruled out by our data. Our eclipse times show that the period decrease detected in NN Ser is continuing, with magnetic braking or a third body the only mechanisms able to explain this change. The planetary/sub-stellar companion previously suggested to exist in NN Ser is also ruled out by our data. Our precise eclipse times also lead to improved ephemerides for DE CVn and GK Vir. The width of a primary eclipse is directly related to the size of the secondary star and variations in the size of this star could be an indication of Applegates mechanism or Wilson (starspot) depressions which can cause jitter in the O−C curves. We measure the width of primary eclipses for the systems NN Ser and GK Vir over several years but find no definitive variations in the radii of the secondary stars. However, our data are precise enough (ΔRsec/Rsec < 10−5) to show the effects of Applegates mechanism in the future. We find no evidence of Wilson depressions in either system. We also find tentative indications that flaring rates of the secondary stars depend on their mass rather than rotation rates.
Monthly Notices of the Royal Astronomical Society | 2011
C. D. J. Savoury; S. P. Littlefair; V. S. Dhillon; T. R. Marsh; B. T. Gänsicke; C. M. Copperwheat; P. Kerry; R. D. G. Hickman; S. G. Parsons
We present high-speed, three-colour photometry of the eclipsing cataclysmic variables CTCV J1300-3052, CTCV J2354-4700 and SDSS J115207.00+404947.8. These systems have orbital periods of 128.07, 94.39 and 97.52 minutes respectively, placing all three systems below the observed “period gap” for cataclysmic variables. For each system we determine the system parameters by fitting a parameterised model to the observed eclipse light curve by χ2 minimisation. We also present an updated analysis of all other eclipsing systems previously analysed by our group. The updated analysis utilises Markov Chain Monte Carlo techniques which enable us to arrive confidently at the best fits for each system with more robust determinations of our errors. A new bright spot model is also adopted, that allows better modelling of bright-spot dominated systems. In addition, we correct a bug in the old code which resulted in the white dwarf radius being underestimated, and consequently both the white dwarf and donor mass being overestimated. New donor masses are generally between 1 and 2σ of those originally published, with the exception of SDSS 1502 (−2.9σ, Mr = −0.012M⊙) and DV UMa (+6.1σ, Mr = +0.039M⊙). We note that the donor mass of SDSS 1501 has been revised upwards by 0.024M⊙ (+1.9σ). This system was previously identified as having evolved passed the minimum orbital period for cataclysmic variables, but the new mass determination suggests otherwise. Our new analysis confirms that SDSS 1035 and SDSS 1433 have evolved past the period minimum for cataclysmic variables, corroborating our earlier studies. We find that the radii of donor stars are oversized when compared to theoretical models, by approximately 10 percent. We show that this can be explained by invoking either enhanced angular momentum loss, or by taking into account the effects of star spots. We are unable to favour one cause over the other, as we lack enough precise mass determinations for systems with orbital periods between 100 and 130 minutes, where evolutionary tracks begin to diverge significantly. We also find a strong tendency towards high white dwarf masses within our sample, and no evidence for any He-core white dwarfs. The dominance of high mass white dwarfs implies that erosion of the white dwarf during the nova outburst must be negligible, or that not all of the mass accreted is ejected during nova cycles, resulting in the white dwarf growing in mass.
Monthly Notices of the Royal Astronomical Society | 2014
T. R. Marsh; S. G. Parsons; M. C. P. Bours; S. P. Littlefair; C. M. Copperwheat; V. S. Dhillon; E. Breedt; C. Caceres; M. R. Schreiber
We present 25 new eclipse times of the white dwarf binary NN Ser taken with the high-speed camera ULTRACAM on the William Herschel Telescope and New Technology Telescope, the RISE camera on the Liverpool Telescope and HAWK-I on the Very Large Telescope to test the two-planet model proposed to explain variations in its eclipse times measured over the last 25 yr. The planetary model survives the test with flying colours, correctly predicting a progressive lag in eclipse times of 36 s that has set in since 2010 compared to the previous 8 yr of precise times. Allowing both orbits to be eccentric, we find orbital periods of 7.9 ± 0.5 and 15.3 ± 0.3 yr, and masses of 2.3 ± 0.5 and 7.3 ± 0.3 MJ. We also find dynamically long-lived orbits consistent with the data, associated with 2:1 and 5:2 period ratios. The data scatter by 0.07 s relative to the best-fitting model, by some margin the most precise of any of the proposed eclipsing compact object planet hosts. Despite the high precision, degeneracy in the orbit fits prevents a significant measurement of a period change of the binary and of N-body effects. Finally, we point out a major flaw with a previous dynamical stability analysis of NN Ser, and by extension, with a number of analyses of similar systems.
Nature | 2013
P. F. L. Maxted; Aldo M. Serenelli; A. Miglio; Thomas R. Marsh; Ulrich Heber; Vikram S. Dhillon; S. P. Littlefair; C. M. Copperwheat; B. Smalley; E. Breedt; V. Schaffenroth
Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars and other exotic binary star systems. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers. This dichotomy is not well understood, so the potential use of low-mass white dwarfs as independent clocks with which to test the spin-down ages of pulsars or as probes of the extreme environments in which low-mass white dwarfs form cannot fully be exploited. Here we report precise mass and radius measurements for the precursor to a low-mass white dwarf. We find that only models in which this disrupted red-giant star has a thick hydrogen envelope can match the strong constraints provided by our data. Very cool low-mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low-mass white-dwarf precursor is a type of pulsating star not hitherto seen. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes.