Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C.M. Evock-Clover is active.

Publication


Featured researches published by C.M. Evock-Clover.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2002

Expression of an uncoupling protein gene homolog in chickens

C.M. Evock-Clover; Stephen M. Poch; Mark P. Richards; C. M. Ashwell; John P. McMurtry

An avian uncoupling protein (UCP) gene homolog was recently sequenced from skeletal muscle and was proposed to have a role in thermogenesis in chickens, ducks and hummingbirds. Since mammalian UCP 2 and UCP 3 also appear to have functions associated with energy and substrate partitioning and body weight regulation, the purpose of this study was to further characterize chicken UCP under conditions of nutritional stress and/or leptin administration. Male 3-week-old chickens were starved for 24 or 48 h and then half of each group was refed for an additional 24 h. In a follow-up experiment, chickens were fed or starved for 48 h with or without leptin administration. Feed deprivation increased UCP mRNA expression in skeletal muscle by up to 260% (P<0.001), and in a time-dependent manner in pectoralis muscle. Refeeding for 24 h normalized muscle UCP mRNA levels. Leptin administration had no effect on muscle UCP. Chicken muscle UCP mRNA levels were highly correlated with plasma triglyceride and non-esterified fatty acid (NEFA) concentrations, and with circulating levels of insulin, insulin-like growth factor (IGF)-I and IGF-II. These results suggest that, as in mammals, avian UCP is up-regulated during feed deprivation and is highly correlated with increased fatty acid oxidation and flux into skeletal muscle.


BMC Genomics | 2008

Effects of increased milking frequency on gene expression in the bovine mammary gland

E.E. Connor; Stephen Siferd; Theodore H. Elsasser; C.M. Evock-Clover; Curtis P. Van Tassell; Tad S. Sonstegard; Violet M Fernandes; Anthony Capuco

BackgroundPrevious research has demonstrated that increased milking frequency of dairy cattle during the first few weeks of lactation enhances milk yield, and that the effect persists throughout the entire lactation period. The specific mechanisms controlling this increase in milk production are unknown, but suggested pathways include increased mammary epithelial cell number, secretory capacity, and sensitivity to lactogenic hormones. We used serial analysis of gene expression (SAGE) and microarray analysis to identify changes in gene expression in the bovine mammary gland in response to 4× daily milking beginning at d 4 of lactation (IMF4) relative to glands milked 2× daily (Control) to gain insight into physiological changes occurring within the gland during more frequent milking.ResultsResults indicated changes in gene expression related to cell proliferation and differentiation, extracellular matrix (ECM) remodeling, metabolism, nutrient transport, and immune function in IMF4 versus Control cows. In addition, pathways expected to promote neovascularization within the gland appeared to be up regulated in IMF4 cows. To validate this finding, immunolocalization of Von Willebrandts factor (VWF), an endothelial cell marker, and its co-localization with the nuclear proliferation antigen Ki67 were evaluated in mammary tissue sections at approximately d 7 and d 14 of lactation in cows milked 4× daily versus Controls to estimate endothelial cell abundance and proliferation within the gland. Consistent with expression of genes related to neovascularization, both abundance of VWF and its co-localization with Ki67 appeared to be elevated in cows milked 4× daily, suggesting persistent increased milk yield in response to increased milking frequency may be mediated or complemented by enhanced mammary ECM remodeling and neovascularization within the gland.ConclusionAdditional study is needed to determine whether changes in ECM remodeling and neovascularization of the mammary gland result in increased milk yield during increased milking frequency, or occur in response to an increased demand for milk production. Gene pathways identified by the current study will provide a basis for future investigations to identify factors mediating the effects of milking frequency on milk yield.


Experimental Biology and Medicine | 2009

In vivo expansion of the mammary stem/ progenitor cell population by xanthosine infusion.

Anthony Capuco; C.M. Evock-Clover; Andrea Minuti; David L. Wood

Mammary stem cells provide for growth and maintenance of the mammary gland and are therefore of considerable interest as determinants of productivity and efficiency of dairy animals and as targets of carcinogenesis in humans. Xanthosine treatment was previously shown to promote expansion of hepatic stem cells in vitro. The objective of this study was to determine if in vivo treatment with xanthosine can increase the mammary stem cell population. Xanthosine was infused into the right mammary glands of four female Holstein calves for 5 consecutive days. Immediately after each xanthosine treatment, calves were injected intravenously with 5-bromo-2-deoxyuridine (BrdU). Forty days after the final treatment, calves were euthanized and mammary tissue harvested. BrdU-label retaining epithelial cells (LREC) were detected immunohistochemically and quantified. Retention of BrdU was used as a marker for putative bovine mammary stem cells. Infusion of xanthosine into the bovine mammary gland significantly increased the number of LREC in treated glands compared to contralateral control glands (P < 0.05). LREC averaged 0.4% of epithelial cells in control glands and 0.8% in xanthosine-treated glands. The increase in LREC in xanthosine-treated glands was supported by a concomitant increase in telomerase activity (P < 0.01) and a correlation between LREC and telomerase (P < 0.05; r 2 = 0.7). Data indicate that in vivo treatment with xanthosine can be used to increase the number of mammary stem cells. This is the first demonstration of an in vivo treatment to increase the endogenous population of mammary stem cells, with utility for biomedical research and dairy management.


Animal | 2012

Bovine mammary stem cells: cell biology meets production agriculture

Anthony Capuco; Ratan K. Choudhary; K. M. Daniels; Robert W. Li; C.M. Evock-Clover

Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue repair. Accordingly, we and others have attempted to characterize and alter the function of bovine MaSC. In this review, we provide an overview of current knowledge of MaSC gained from studies using mouse and human model systems and present research on bovine MaSC within that context. Recent data indicate that MaSC retain labeled DNA for extended periods because of their selective segregation of template DNA strands during mitosis. Relying on this long-term retention of bromodeoxyuridine-labeled DNA, we identified putative bovine MaSC. These label-retaining epithelial cells (LREC) are in low abundance within mammary epithelium (<1%). They are predominantly estrogen receptor (ER)-negative and localized in a basal or suprabasal layer of the epithelium throughout the gland. Thus, the response of MaSC to estrogen, the major mitogen in mammary gland, is likely mediated by paracrine factors released by cells that are ER-positive. This is consistent with considerable evidence for cross-talk within and between epithelial cells and surrounding stromal cells. Excision of classes of cells by laser microdissection and subsequent microarray analysis will hopefully provide markers for MaSC and insights into their regulation. Preliminary analyses of gene expression in laser-microdissected LREC and non-LREC are consistent with the concept that LREC represent populations of stem cells and progenitor cells that differ with regard to their properties and location within the epithelial layer. We have attempted to modulate the MaSC number by infusing a solution of xanthosine through the teat canal and into the ductal network of the mammary glands of prepubertal heifers. This treatment increased the number of putative stem cells, as evidenced by an increase in the percentage of LREC and increased telomerase activity within the tissue. The exciting possibility that stem cell expansion can influence milk production is currently under investigation.


Journal of Dairy Science | 2010

Characterization of glucagon-like peptide 2 pathway member expression in bovine gastrointestinal tract

E.E. Connor; Ransom L. Baldwin; Anthony Capuco; C.M. Evock-Clover; S.E. Ellis; K.S. Sciabica

Glucagon-like peptide 2 (GLP-2), secreted by enteroendocrine cells, has several physiological effects on the intestine of monogastric species, including promotion of growth of intestinal epithelium, reduction of epithelial cell apoptosis, and enhancement of intestinal blood flow, nutrient absorption, and epithelial barrier function. The regulatory functions of GLP-2 in the ruminant gastrointestinal tract (GIT) have not been well studied. The objectives of this investigation were to characterize the mRNA expression of 4 members of the GLP-2 pathway throughout the bovine GIT, including (1) proglucagon (GCG), the parent peptide from which GLP-2 is derived through cleavage by prohormone convertase; (2) prohormone convertase (PCSK1); (3) GLP-2 receptor (GLP2R); and (4) dipeptidyl peptidase IV (DPP4), the enzyme that inactivates GLP-2. Gene expression was evaluated in rumen, reticulum, omasum, abomasum, duodenum, jejunum, ileum, cecum, and rectum collected at slaughter from prepubertal heifers, mature cows in early, mid, and late lactation, and nonlactating cows (n=3 per stage) by a gene expression profiling assay. In addition, mRNA expression of 14 genes involved in nutrient transport, enzyme activity, blood flow, apoptosis, and proliferation were evaluated in the 9 GIT tissues for their association with GCG and GLP2R mRNA expression. Immunohistochemistry was used to localize GLP2R protein in tissues of the lower GIT. Results indicated that mRNA expression of GCG, PCSK1, GLP2R, and DPP4 varies across the 9 GIT tissues, with greatest expression in small and large intestines, and generally nondetectable levels in forestomachs. Expression of DPP4 and GLP2R mRNA varied by developmental stage or lactational state in intestinal tissues. Expression of GCG or GLP2R mRNA was correlated with molecular markers of proliferation, apoptosis, blood flow, enzyme activity, and urea transport, depending on the tissue examined, which suggests a potential for involvement of GLP-2 in these physiological processes in the ruminant GIT. The GLP2R protein was expressed in intestinal crypts of the bovine GIT, which is consistent with the distribution in monogastric species. Our findings support a functional role of the GLP-2 pathway in bovine GIT and the potential for use of GLP-2 as a therapy to improve intestinal function and nutrient absorption in ruminants.


Pathobiology | 1995

Effect of Recombinant Growth Hormone and Chromium Picolinate on Cytokine Production and Growth Performance in Swine

Michael J. Myers; Dorothy E. Farrell; C.M. Evock-Clover; Carol V. Cope; Mark Henderson; N. C. Steele

The effect of dietary chromium picolinate (CrP) and recombinant porcine growth hormone, somatotropin (rPST) administration on growth performance and cytokine production in Landrace-Poland China gilts was determined using a 2 by 2 treatment array. Treatments were: (1) control (basal diet), (2) CrP-supplemented diet (basal diet + 300 micrograms Cr3+/kg diet as CrP), (3) rPST (100 pg/kg body weight/day), and (4) rPST+CrP. CrP-supplemented diets were fed beginning at 20 kg body weight through 90 kg. Administration of rPST was begun at 60 kg weight and continued through 90 kg. All rPST treated pigs demonstrated improvements in growth performance versus controls. Pigs given CrP-supplemented diets showed no differences in growth performance. At 90 kg, pigs were challenged with endotoxin (lipopolysaccharide, 0.2 microgram/kg i.v.). Blood samples were collected at 0, 1, and 3 h postchallenge. Plasma IL-6 levels increased from 23 U/ml at time 0 to 1,927 U/ml at 3 h for control swine. Swine from the CrP treatment group had IL-6 levels of 8,130 U/ml at 3 h post-LPS. There were no differences in plasma IL-6 from pigs in the rPST and rPST+CrP treatment groups compared to the controls. Endotoxin challenge had no effect on either blood glucose levels or induction of TNF-alpha in any treatment group. PBMC from CrP-treated animals produced more IL-2 than peripheral blood mononuclear cells from all other groups.


Journal of Animal Science | 2015

COMPARATIVE GUT PHYSIOLOGY SYMPOSIUM: Comparative physiology of glucagon-like peptide-2: Implications and applications for production and health of ruminants.

E.E. Connor; C.M. Evock-Clover; M.P. Walker; T.H. Elsasser; Stanislaw Kahl

Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide derived from proteolytic cleavage of proglucagon by prohormone convertase 1/3 in enteroendocrine L cells. Studies conducted in humans, in rodent models, and in vitro indicate that GLP-2 is secreted in response to the presence of molecules in the intestinal lumen, including fatty acids, carbohydrates, amino acids, and bile acids, which are detected by luminal chemosensors. The physiological actions of GLP-2 are mediated by its G protein-coupled receptor expressed primarily in the intestinal tract on enteric neurons, enteroendocrine cells, and myofibroblasts. The biological activity of GLP-2 is further regulated by dipeptidyl peptidase IV, which rapidly cleaves the N-terminus of GLP-2 that is responsible for GLP-2 receptor activation. Within the gut, GLP-2 increases nutrient absorption, crypt cell proliferation, and mesenteric blood flow and decreases gut permeability and motility, epithelial cell apoptosis, and inflammation. Outside the gut, GLP-2 reduces bone resorption, can suppress appetite, and is cytoprotective in the lung. Thus, GLP-2 has been studied intensively as a therapeutic to improve intestinal function of humans during parenteral nutrition and following small bowel resection and, more recently, as a treatment for osteoporosis and obesity-related disorders and to reduce cellular damage associated with inflammation of the gut and lungs. Recent studies demonstrate that many biological actions and properties of GLP-2 in ruminants are similar to those in nonruminants, including the potential to reduce intestinal nitro-oxidative stress in calves caused by parasitic diseases such as coccidiosis. Because of its beneficial impacts on nutrient absorption, gut healing, and normal gut development, GLP-2 therapy offers significant opportunities to improve calf health and production efficiency. However, GLP-2 therapies require an extended time course to achieve desired physiological responses, as well as daily administration because of the hormones short half-life. Thus, practical means of administration and alternative strategies to enhance basal GLP-2 secretion (e.g., through specific feed additives), which are more likely to achieve consumer acceptance, are needed. Opportunities to address these challenges are discussed.


Domestic Animal Endocrinology | 1999

Challenge differentially affects cytokine production and metabolic status of growing and finishing swine.

Michael J. Myers; Dorothy E. Farrell; John D. Baker; Carol V. Cope; C.M. Evock-Clover; N. C. Steele

Growing (35 kg body weight) and finishing (85 kg body weight) swine challenged with endotoxin (Escherichia coli O55:B5) at a dose of either 2 or 20 microg/kg produced tumor necrosis factor (TNF)alpha in a dose-response relationship as measured by bioassay. Peak TNFalpha plasma levels were observed 1-2 hr post-challenge, returning to basal values 4 hr post-challenge. However, both an enzyme-linked immunosorbent assay specific for swine TNFalpha and total human TNFalpha demonstrated no dose-response relationship; peak plasma levels of immunoreactive TNFalpha were also observed 1-2 hr post-challenge. Maximal plasma interleukin-6 levels occurred 1-2 hr post-challenge and remained elevated through 8 hr post-challenge; there was no effect of lipopolysaccharide dose or metabolic status. Although the metabolic status of the animals also affected glucose levels, with growing animals exhibiting greater sensitivity compared with finishing animals, endotoxin-induced decreases in blood glucose levels were primarily dose-dependent. In contrast, changes in plasma urea nitrogen and free fatty acid (FFA) levels were strictly related to the metabolic status. Urea nitrogen levels were unchanged in growing swine, whereas they were increased in finishing swine and remained elevated 24 hr post-challenge. FFA levels in growing and finishing swine increased 3-6 hr post-challenge. FFA levels returned to basal values for finishing swine 24 hr post challenge, but in growing swine remained elevated 24 hr post-challenge. Plasma aspartate transaminase levels were increased through 24 hr post-challenge; animals given a dose of 20 microg/kg exhibited the greatest increase. Similarly, swine challenged with a dose of 20 microg/kg also exhibited the greatest increase in levels of conjugated bilirubin; there was no effect on unconjugated (free) bilirubin. These results demonstrate that endotoxin challenge of swine result in a pattern of changes that are dependent on both the dose of endotoxin used and the metabolic status of the animal examined.


Frontiers in Oncology | 2013

Comparison of the Transcriptomes of Long-Term Label Retaining-Cells and Control Cells Microdissected from Mammary Epithelium: An Initial Study to Characterize Potential Stem/Progenitor Cells

Ratan K. Choudhary; Robert W. Li; C.M. Evock-Clover; Anthony Capuco

Background: Previous molecular characterizations of mammary stem cells (MaSC) have utilized fluorescence-activated cell sorting or in vitro cultivation of cells from enzymatically dissociated tissue to enrich for MaSC. These approaches result in the loss of all histological information pertaining to the in vivo locale of MaSC and progenitor cells. Instead, we used laser microdissection to excise putative progenitor cells and control cells from their in situ locations in cryosections and characterized the molecular properties of these cells. MaSC/progenitor cells were identified based on their ability to retain bromodeoxyuridine for an extended period. Results: We isolated four categories of cells from mammary epithelium of female calves: bromodeoxyuridine label retaining epithelial cells (LREC) from basal (LRECb) and embedded layers (LRECe), and epithelial control cells from basal and embedded layers. Enriched expression of genes in LRECb was associated with stem cell attributes and identified WNT, TGF-β, and MAPK pathways of self renewal and proliferation. Genes expressed in LRECe revealed retention of some stem-like properties along with up-regulation of differentiation factors. Conclusion: Our data suggest that LREC in the basal epithelial layer are enriched for MaSC, as these cells showed increased expression of genes that reflect stem cell attributes; whereas LREC in suprabasal epithelial layers are enriched for more committed progenitor cells, expressing some genes that are associated with stem cell attributes along with those indicative of cell differentiation. Our results support the use of DNA label retention to identify MaSC and also provide a molecular profile and novel candidate markers for these cells. Insights into the biology of stem cells will be gained by confirmation and characterization of candidate MaSC markers identified in this study.


Journal of Dairy Science | 2015

Short communication: Glucagon-like peptide-2 and coccidiosis alter tight junction gene expression in the gastrointestinal tract of dairy calves1

M.P. Walker; C.M. Evock-Clover; T.H. Elsasser; E.E. Connor

Tight junction (TJ) proteins are integral factors involved in gut barrier function, and therapy with glucagon-like peptide-2 (GLP-2) enhances gut integrity. Our aim was to assess effects of GLP-2 treatment on mRNA expression of 8 TJ complex proteins in the intestine of dairy calves not infected or infected with Eimeria bovis at 11±3d of age. Mucosal epithelium from jejunum, ileum, and cecum was collected at slaughter from Holstein bull calves assigned to 4 groups: noninfected, buffer-treated (n=5); noninfected, GLP-2 treated (n=4); E. bovis-infected, buffer-treated (n=5); and E. bovis-infected, GLP-2-treated (n=4). Infected calves were orally dosed with 100,000 to 200,000 sporulated E. bovis oocysts on d 0; GLP-2-treated calves received 50 µg of GLP-2/kg of body weight subcutaneously twice daily for 10d beginning on d 18; and buffer-treated calves received an equal injection volume of 0.01 M Na bicarbonate buffer. All calves were killed on d 28. The mRNA expression of coxsackie and adenovirus receptor (CXADR), claudins 1, 2, and 4 (CLDN1, CLDN2, and CLDN4), F11 receptor (F11R), junction adhesion molecule 2 (JAM2), occludin (OCLN), and tight junction protein ZO-1 (TJP1) was determined by real-time quantitative PCR. In jejunum and ileum, an interaction of E. bovis infection and GLP-2 treatment on gene expression was noted. In jejunum of noninfected calves, GLP-2 increased CXADR, CLDN2, OCLN, and TJP1 mRNA expression but had no effect on mRNA expression in infected calves. Treatment with GLP-2 also increased tight junction protein ZO-1 protein expression in jejunum of noninfected calves as determined by immunohistochemistry. In ileum, E. bovis decreased expression of JAM2, OCLN, and TJP1 in buffer-treated calves, and GLP-2 increased TJP1 expression in infected calves. In cecum, E. bovis infection reduced expression of CXADR, CLDN4, F11R, and OCLN, and GLP-2 therapy increased expression of CLDN4, F11R, OCLN, and TJP1. Results are consistent with studies in nonruminants showing decreased expression of TJ complex proteins in the intestinal tract during pathogen-induced diarrhea and increased TJ protein expression in intestinal tissues in response to GLP-2 treatment. In conclusion, E. bovis reduces gene expression of TJ proteins primarily in cecum of calves 28d postinfection, and GLP-2 increases expression of selected TJ genes in intestinal tissues. Use of GLP-2 to improve gut barrier function in ruminants during pathogen-induced diarrhea warrants additional study.

Collaboration


Dive into the C.M. Evock-Clover's collaboration.

Top Co-Authors

Avatar

Anthony Capuco

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

T.H. Elsasser

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

E.E. Connor

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Ransom L. Baldwin

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

N. C. Steele

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

C. M. Ashwell

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.P. Walker

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Erminio Trevisi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Bertoni

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge