Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C.-M. Ma is active.

Publication


Featured researches published by C.-M. Ma.


Journal of Clinical Oncology | 2013

Randomized Trial of Hypofractionated External-Beam Radiotherapy for Prostate Cancer

Alan Pollack; Gail Walker; Eric M. Horwitz; Robert A. Price; S.J. Feigenberg; Andre Konski; Radka Stoyanova; Benjamin Movsas; Richard E. Greenberg; Robert G. Uzzo; C.-M. Ma; Mark K. Buyyounouski

PURPOSEnTo determine if escalated radiation dose using hypofractionation significantly reduces biochemical and/or clinical disease failure (BCDF) in men treated primarily for prostate cancer.nnnPATIENTS AND METHODSnBetween June 2002 and May 2006, men with favorable- to high-risk prostate cancer were randomly allocated to receive 76 Gy in 38 fractions at 2.0 Gy per fraction (conventional fractionation intensity-modulated radiation therapy [CIMRT]) versus 70.2 Gy in 26 fractions at 2.7 Gy per fraction (hypofractionated IMRT [HIMRT]); the latter was estimated to be equivalent to 84.4 Gy in 2.0 Gy fractions. High-risk patients received long-term androgen deprivation therapy (ADT), and some intermediate-risk patients received short-term ADT. The primary end point was the cumulative incidence of BCDF. Secondarily, toxicity was assessed.nnnRESULTSnThere were 303 assessable patients with a median follow-up of 68.4 months. No significant differences were seen between the treatment arms in terms of the distribution of patients by clinicopathologic or treatment-related (ADT use and length) factors. The 5-year rates of BCDF were 21.4% (95% CI, 14.8% to 28.7%) for CIMRT and 23.3% (95% CI, 16.4% to 31.0%) for HIMRT (P = .745). There were no statistically significant differences in late toxicity between the arms; however, in subgroup analysis, patients with compromised urinary function before enrollment had significantly worse urinary function after HIMRT.nnnCONCLUSIONnThe hypofractionation regimen did not result in a significant reduction in BCDF; however, it is delivered in 2.5 fewer weeks. Men with compromised urinary function before treatment may not be ideal candidates for this approach.


Physics in Medicine and Biology | 2003

A comparative dosimetric study on tangential photon beams, intensity-modulated radiation therapy (IMRT) and modulated electron radiotherapy (MERT) for breast cancer treatment

C.-M. Ma; Ding M; J Li; Michael C. Lee; Todd Pawlicki; J Deng

Recently, energy- and intensity-modulated electron radiotherapy (MERT) has garnered a growing interest for the treatment of superficial targets. In this work. we carried out a comparative dosimetry study to evaluate MERT, photon beam intensity-modulated radiation therapy (IMRT) and conventional tangential photon beams for the treatment of breast cancer. A Monte Carlo based treatment planning system has been investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We have compared breast treatment plans generated using this home-grown treatment optimization and dose calculation software forthese treatment techniques. The MERT plans were planned with up to two gantry angles and four nominal energies (6, 9, 12 and 16 MeV). The tangential photon treatment plans were planned with 6 MV wedged photon beams. The IMRT plans were planned using both multiple-gantry 6 MV photon beams or two 6 MV tangential beams. Our results show that tangential IMRT can reduce the dose to the lung, heart and contralateral breast compared to conventional tangential wedged beams (up to 50% reduction in high dose volume or 5 Gy in the maximum dose). MERT can reduce the maximum dose to the lung by up to 20 Gy and to the heart by up to 35 Gy compared to conventional tangential wedged beams. Multiple beam angle IMRT can significantly reduce the maximum dose to the lung and heart (up to 20 Gy) but it induces low and medium doses to a large volume of normal tissues including lung, heart and contralateral breast. It is concluded that MERT has superior capabilities to achieve dose conformity both laterally and in the depth direction, which will be well suited for treating superficial targets such as breast cancer.


Physics in Medicine and Biology | 2004

Dosimetric evaluation of MRI-based treatment planning for prostate cancer

L Chen; R Price; T. B. Nguyen; L Wang; J Li; Qin L; M Ding; E. Palacio; C.-M. Ma; Alan Pollack

The purpose of this study is to evaluate the dosimetric accuracy of MRI-based treatment planning for prostate cancer using a commercial radiotherapy treatment planning system. Three-dimensional conformal plans for 15 prostate patients were generated using the AcQPlan system. For each patient, dose distributions were calculated using patient CT data with and without heterogeneity correction, and using patient MRI data without heterogeneity correction. MR images were post-processed using the gradient distortion correction (GDC) software. The distortion corrected MR images were fused to the corresponding CT for each patient for target and structure delineation. The femoral heads were delineated based on CT. Other anatomic structures relevant to the treatment (i.e., prostate, seminal vesicles, lymph notes, rectum and bladder) were delineated based on MRI. The external contours were drawn separately on CT and MRI. The same internal contours were used in the dose calculation using CT- and MRI-based geometries by directly transferring them between MRI and CT as needed. Treatment plans were evaluated based on maximum dose, isodose distributions and dose-volume histograms. The results confirm previous investigations that there is no clinically significant dose difference between CT-based prostate plans with and without heterogeneity correction. The difference in the target dose between CT- and MRI-based plans using homogeneous geometry was within 2.5%. Our results suggest that MRI-based treatment planning is suitable for radiotherapy of prostate cancer.


Medical Physics | 2004

Clinical implementation of intensity-modulated tangential beam irradiation for breast cancer.

J Li; G. Freedman; R Price; L Wang; Penny R. Anderson; L Chen; W Xiong; Yang J; A. Pollack; C.-M. Ma

A Monte Carlo based intensity-modulated radiation therapy (IMRT) treatment planning system has been developed and used for breast treatment. An iterative method was used for optimization to generate IMRT plans and a step-and-shoot technique was used for beam delivery. The patient setup and incident beam directions were the same as those for conventional tangential photon treatment. The weights for the opposed beamlets in the two tangential beams were determined first by the doses at the depths of the maximum dose at both sides to minimize hot spots. The intensity of an individual beamlet pair was then optimized based on the dose at the midplane. Fine tuning was made to achieve optimal target dose uniformity and to reduce the dose to the heart when necessary. The final dose calculations were performed using the Monte Carlo method and the plans were verified by phantom measurements. The dose distributions and dose-volume-histograms of IMRT plans were compared with those of conventional plans that were generated using a commercial treatment planning system and recalculated using an in-house Monte Carlo system for the first 25 patients. The dose comparisons showed that the percentage volume receiving more than 95% of the prescription dose (V95) and the percentage volume receiving more than 100% of the prescription dose (V100) for the clinical target volume (CTV) of IMRT plans were about the same as those of conventional plans. The percentage volume receiving more than 105% of the prescription dose (V105) for the CTV was reduced from 23.1% to 7.9% on average. The percentage volume of the lung receiving more than 20 Gy dose (V20 Gy) during the entire treatment was reduced by about 10%. The percentage volume of the heart receiving more than 30 Gy dose (V30 Gy) is reduced from 3.3% to 0.3%. Further studies revealed that a less than 5 degrees change in couch angle and collimator angle at patient setup had no significant effect on the dose coverage of CTV but had significant effect on the dose to the lung and heart. The study on the effect of beam spoiler showed that it increased the dose at the buildup region by 0- 13% that varies with location. The machine output linearity and stability for small monitor unit delivery of Siemens accelerators used for this study was checked and found to be suitable for breast IMRT. The total effect of variations was calculated to be less than 1% for typical breast treatments. The beam delivery time was increased by about 2 min compared with conventional tangential treatments. The whole treatment including patient setup and beam delivery can be completed in a 15 min slot. The IMRT technique has been proven practical for breast treatment clinically. The results showed that tangential IMRT improved the dose homogeneity in the breast and reduced the dose to the lung and heart.


Physics in Medicine and Biology | 2006

Investigation of MR image distortion for radiotherapy treatment planning of prostate cancer

Z Chen; C.-M. Ma; K Paskalev; J Li; Yang J; T Richardson; Palacio L; X Xu; L Chen

MR imaging based treatment planning for radiotherapy of prostate cancer is limited due to MR imaging system related geometrical distortions, especially for patients with large body sizes. On our 0.23 T open scanner equipped with the gradient distortion correction (GDC) software, the residual image distortions after the GDC were <5 mm within the central 36 cm x 36 cm area for a standard 48 cm field of view (FOV). In order to use MR imaging alone for treatment planning the effect of residual MR distortions on external patient contour determination, especially for the peripheral regions outside the 36 cm x 36 cm area, must be investigated and corrected. In this work, we performed phantom measurements to quantify MR system related residual geometric distortions after the GDC and the effective FOV. Our results show that for patients with larger lateral dimensions (>36 cm), the differences in patient external contours between distortion-free CT images and GDC-corrected MR images were 1-2 cm because of the combination of greater gradient distortion and loss of field homogeneity away from the isocentre and the uncertainties in patient setup during CT and MRI scans. The measured distortion maps were used to perform point-by-point corrections for patients with large dimensions inside the effective FOV. Using the point-by-point method, the geometrical distortion after the GDC were reduced to <3 mm for external contour determination and the effective FOV was expanded from 36 cm to 42 cm.


Physics in Medicine and Biology | 2004

Modelling of electron contamination in clinical photon beams for Monte Carlo dose calculation

Yang J; J Li; Qin L; W Xiong; C.-M. Ma

The purpose of this work is to model electron contamination in clinical photon beams and to commission the source model using measured data for Monte Carlo treatment planning. In this work, a planar source is used to represent the contaminant electrons at a plane above the upper jaws. The source size depends on the dimensions of the field size at the isocentre. The energy spectra of the contaminant electrons are predetermined using Monte Carlo simulations for photon beams from different clinical accelerators. A random creep method is employed to derive the weight of the electron contamination source by matching Monte Carlo calculated monoenergetic photon and electron percent depth-dose (PDD) curves with measured PDD curves. We have integrated this electron contamination source into a previously developed multiple source model and validated the model for photon beams from Siemens PRIMUS accelerators. The EGS4 based Monte Carlo user code BEAM and MCSIM were used for linac head sinulation and dose calculation. The Monte Carlo calculated dose distributions were compared with measured data. Our results showed good agreement (less than 2% or 2 mm) for 6, 10 and 18 MV photon beams.


Physics in Medicine and Biology | 2004

Monitor unit calculation for Monte Carlo treatment planning

C.-M. Ma; R Price; J Li; L Chen; L Wang; E Fourkal; Qin L; Yang J

In this work, we investigate a formalism for monitor unit (MU) calculation in Monte Carlo based treatment planning. By relating MU to dose measured under reference calibration conditions (central axis, depth of dose maximum in water, 10 cm x 10 cm field defined at 100 cm source-to-surface distance) our formalism determines the MU required for a treatment plan based on the prescription dose and Monte Carlo calculated dose distribution. Detailed descriptions and formulae are given for various clinical situations including conventional treatments and advanced techniques such as intensity-modulated radiotherapy (IMRT) and modulated electron radiotherapy (MERT). Analysis is made of the effects of source modelling, beam modifier simulation and patient dose calculation accuracy, all of which are important factors for absolute dose calculations using Monte Carlo simulations. We have tested the formalism through phantom measurements and the predicted MU values were consistent with measured values to within 2%. The formalism has been used for MU calculation and plan comparison for advanced treatment techniques such as MERT, extracranial stereotactic IMRT, MRI-based treatment planning and intensity-modulated laser-proton therapy studies. It is also used for absolute dose calculations using Monte Carlo simulations for treatment verification, which has become part of our comprehensive IMRT quality assurance programme.


Physics in Medicine and Biology | 2006

Characterization of megavoltage electron beams delivered through a photon multi-leaf collimator (pMLC).

F du Plessis; Antonio Leal; Sotirios Stathakis; W Xiong; C.-M. Ma

A study is presented that characterizes megavoltage electron beams delivered through an existing double-focused photon multi-leaf collimator (pMLC) using film measurements in a solid water phantom. Machine output stability and linearity were evaluated as well as the effect of source-to-surface distance (SSD) and field size on the penumbra for electron energies between 6 and 18 MeV over an SSD range of 60-100 cm. Penumbra variations as a function of field size, depth of measurement and the influence of the jaws were also studied. Field abutment, field flatness and target coverage for segmented beams were also addressed. The measured field size for electrons transported through the pMLC was the same as that for an x-ray beam up to SSDs of 70 cm. At larger SSD, the lower energy electron fields deviated from the projected field. Penumbra data indicated that 60 cm SSD was the most favourable treatment distance. Backprojection of P(20-80) penumbra data yielded a virtual source position located at 98.9 cm from the surface for 18 MeV electrons. For 6 MeV electrons, the virtual source position was at a distance of 82.6 cm. Penumbra values were smaller for small beam slits and reached a near-constant value for field widths larger than 5 cm. The influence of the jaws had a small effect on the penumbra. The R90 values ranged from 1.4 to 4.8 cm between 6 and 21 MeV as measured at 60 cm SSD for a 9 x 9 cm2 field. Uniformity and penumbra improvement could be demonstrated using weighted abutted fields especially useful for small segments. No detectable electron leakage through the pMLC was observed. Bremsstrahlung measurements taken at 60 cm SSD for a 9 x 9 cm2 field as shaped by the pMLC compared within 1% to bremsstrahlung measurements taken at 100 cm SSD for a 10 x 10 cm2 electron applicator field at 100 cm SSD.


Physics in Medicine and Biology | 2005

Dosimetric verification of IMRT treatment planning using Monte Carlo simulations for prostate cancer

Yang J; J Li; L Chen; R Price; Shawn McNeeley; Qin L; L Wang; W Xiong; C.-M. Ma

The purpose of this work is to investigate the accuracy of dose calculation of a commercial treatment planning system (Corvus, Normos Corp., Sewickley, PA). In this study, 30 prostate intensity-modulated radiotherapy (IMRT) treatment plans from the commercial treatment planning system were recalculated using the Monte Carlo method. Dose-volume histograms and isodose distributions were compared. Other quantities such as minimum dose to the target (D(min)), the dose received by 98% of the target volume (D98), dose at the isocentre (D(iso)), mean target dose (D(mean)) and the maximum critical structure dose (D(max)) were also evaluated based on our clinical criteria. For coplanar plans, the dose differences between Monte Carlo and the commercial treatment planning system with and without heterogeneity correction were not significant. The differences in the isocentre dose between the commercial treatment planning system and Monte Carlo simulations were less than 3% for all coplanar cases. The differences on D98 were less than 2% on average. The differences in the mean dose to the target between the commercial system and Monte Carlo results were within 3%. The differences in the maximum bladder dose were within 3% for most cases. The maximum dose differences for the rectum were less than 4% for all the cases. For non-coplanar plans, the difference in the minimum target dose between the treatment planning system and Monte Carlo calculations was up to 9% if the heterogeneity correction was not applied in Corvus. This was caused by the excessive attenuation of the non-coplanar beams by the femurs. When the heterogeneity correction was applied in Corvus, the differences were reduced significantly. These results suggest that heterogeneity correction should be used in dose calculation for prostate cancer with non-coplanar beam arrangements.


Journal of Applied Clinical Medical Physics | 2005

Target localization for post-prostatectomy patients using CT and ultrasound image guidance.

K Paskalev; S.J. Feigenberg; Rojymon Jacob; Shawn McNeeley; Eric M. Horwitz; Robert A. Price; C.-M. Ma; Alan Pollack

We conducted a study comparing B‐mode acquisition and targeting (BAT) ultrasound alignments based on CT data in the postoperative setting. CT scans were obtained with a Primatom CT‐on‐rails on nine patients. Two CT scans were obtained each week, while setup error was minimized by BAT ultrasounds. For the first three patients, a direct comparison was performed. For the next six patients, a template based on the shifts from the week 1 CT during treatment was used for subsequent setup. Comparison of isocenter shifts between the BAT ultrasound and CT was made by the difference, absolute difference, and improvement (using CT alignments as the reference technique). A total of 90 image comparisons were made. The average interfraction motion was 3.2 mm in the lateral, 3.0 mm in the longitudinal, and 5.1 mm in the AP direction. The results suggest that the CT‐based ultrasound templates can improve the localization of the prostate bed when the initial displacements are greater than 4 mm. For initial displacements smaller than 4 mm, the technique neither improved nor worsened target localization. However, ultrasound alignments performed without the use of a template deteriorated patient positioning for two out of three patients, demonstrating that the use of a CT template was beneficial even at small initial displacements. PACS numbers: 87.53.‐j, 87.53.Kn, 87.53.Xd

Collaboration


Dive into the C.-M. Ma's collaboration.

Top Co-Authors

Avatar

J Li

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

L Chen

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J Fan

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

L Wang

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

E Fourkal

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

R Price

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

W Xiong

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yang J

Fox Chase Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge