Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Magen is active.

Publication


Featured researches published by C. Magen.


Nature Materials | 2011

Flexoelectric rotation of polarization in ferroelectric thin films

Gustau Catalan; A. Lubk; A. H. G. Vlooswijk; E. Snoeck; C. Magen; A. Janssens; Gijsbert Rispens; Guus Rijnders; Dave H.A. Blank; Beatriz Noheda

Strain engineering enables modification of the properties of thin films using the stress from the substrates on which they are grown. Strain may be relaxed, however, and this can also modify the properties thanks to the coupling between strain gradient and polarization known as flexoelectricity. Here we have studied the strain distribution inside epitaxial films of the archetypal ferroelectric PbTiO(3), where the mismatch with the substrate is relaxed through the formation of domains (twins). Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal an intricate strain distribution, with gradients in both the vertical and, unexpectedly, the horizontal direction. These gradients generate a horizontal flexoelectricity that forces the spontaneous polarization to rotate away from the normal. Polar rotations are a characteristic of compositionally engineered morphotropic phase boundary ferroelectrics with high piezoelectricity; flexoelectricity provides an alternative route for generating such rotations in standard ferroelectrics using purely physical means.


Nature Materials | 2013

Self-assembled quantum dots in a nanowire system for quantum photonics

Martin Heiss; Yannik Fontana; Anders Gustafsson; G. Wuest; C. Magen; David D. O'Regan; Jun-Wei Luo; Bernt Ketterer; Sonia Conesa-Boj; A. V. Kuhlmann; J. Houel; Eleonora Russo-Averchi; J.R. Morante; Marco Cantoni; Nicola Marzari; Jordi Arbiol; Alex Zunger; R. J. Warburton; A. Fontcuberta i Morral

Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-in-nanowire system that reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned with nanometre precision relative to the nanowire centre. Unusually, their emission is blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-scale electronic structure calculations show that the origin of the optical transitions lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-assembling on silicon substrates, these quantum dots could therefore become building blocks for solid-state lighting devices and third-generation solar cells.


Nature Communications | 2013

Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials

J.C. Rojas Sanchez; L. Vila; G. Desfonds; S. Gambarelli; J. P. Attané; J. M. De Teresa; C. Magen

The Rashba effect is an interaction between the spin and the momentum of electrons induced by the spin-orbit coupling (SOC) in surface or interface states. Its potential for conversion between charge and spin currents has been theoretically predicted but never clearly demonstrated for surfaces or interfaces of metals. Here we present experiments evidencing a large spin-charge conversion by the Bi/Ag Rashba interface. We use spin pumping to inject a spin current from a NiFe layer into a Bi/Ag bilayer and we detect the resulting charge current. As the charge signal is much smaller (negligible) with only Bi (only Ag), the spin-to-charge conversion can be unambiguously ascribed to the Rashba coupling at the Bi/Ag interface. This result demonstrates that the Rashba effect at interfaces can be used for efficient charge-spin conversion in spintronics.


Nature Materials | 2012

Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors

A. Llordés; Anna Palau; Jaume Gazquez; Mariona Coll; R. Vlad; Alberto Pomar; Jordi Arbiol; Roger Guzmán; S Ye; V. Rouco; Felip Sandiumenge; Susagna Ricart; Teresa Puig; M. Varela; D. Chateigner; Johan Vanacken; J. Gutiérrez; Victor Moshchalkov; G. Deutscher; C. Magen; Xavier Obradors

Boosting large-scale superconductor applications require nanostructured conductors with artificial pinning centres immobilizing quantized vortices at high temperature and magnetic fields. Here we demonstrate a highly effective mechanism of artificial pinning centres in solution-derived high-temperature superconductor nanocomposites through generation of nanostrained regions where Cooper pair formation is suppressed. The nanostrained regions identified from transmission electron microscopy devise a very high concentration of partial dislocations associated with intergrowths generated between the randomly oriented nanodots and the epitaxial YBa(2)Cu(3)O(7) matrix. Consequently, an outstanding vortex-pinning enhancement correlated to the nanostrain is demonstrated for four types of randomly oriented nanodot, and a unique evolution towards an isotropic vortex-pinning behaviour, even in the effective anisotropy, is achieved as the nanostrain turns isotropic. We suggest a new vortex-pinning mechanism based on the bond-contraction pairing model, where pair formation is quenched under tensile strain, forming new and effective core-pinning regions.


Nano Letters | 2012

Polarity Assignment in ZnTe, GaAs, ZnO, and GaN-AlN Nanowires from Direct Dumbbell Analysis

Maria de la Mata; C. Magen; Jaume Gazquez; Muhammad Iqbal Bakti Utama; Martin Heiss; Sergei Lopatin; Florian Furtmayr; Carlos J. Fernández-Rojas; Bo Peng; Joan Ramon Morante; Riccardo Rurali; M. Eickhoff; Anna Fontcuberta i Morral; Qihua Xiong; Jordi Arbiol

Aberration corrected scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging and the newly developed annular bright field (ABF) imaging are used to define a new guideline for the polarity determination of semiconductor nanowires (NWs) from binary compounds in two extreme cases: (i) when the dumbbell is formed with atoms of similar mass (GaAs) and (ii) in the case where one of the atoms is extremely light (N or O: ZnO and GaN/AlN). The theoretical fundaments of these procedures allow us to overcome the main challenge in the identification of dumbbell polarity. It resides in the separation and identification of the constituent atoms in the dumbbells. The proposed experimental via opens new routes for the fine characterization of nanostructures, e.g., in electronic and optoelectronic fields, where the polarity is crucial for the understanding of their physical properties (optical and electronic) as well as their growth mechanisms.


Nano Letters | 2011

Three-Dimensional Multiple-Order Twinning of Self-Catalyzed GaAs Nanowires on Si Substrates

Emanuele Uccelli; Jordi Arbiol; C. Magen; Peter Krogstrup; Eleonora Russo-Averchi; Martin Heiss; Gabriel Mugny; François Morier-Genoud; Jesper Nygård; Joan Ramon Morante; Anna Fontcuberta i Morral

In this paper we introduce a new paradigm for nanowire growth that explains the unwanted appearance of parasitic nonvertical nanowires. With a crystal structure polarization analysis of the initial stages of GaAs nanowire growth on Si substrates, we demonstrate that secondary seeds form due to a three-dimensional twinning phenomenon. We derive the geometrical rules that underlie the multiple growth directions observed experimentally. These rules help optimizing nanowire array devices such as solar or water splitting cells or of more complex hierarchical branched nanowire devices.


Langmuir | 2012

Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications.

Beatriz Pelaz; Valeria Grazú; A. Ibarra; C. Magen; Pablo del Pino; Jesús M. de la Fuente

The paper describes a novel and straightforward wet-chemical synthetic route to produce biocompatible single-crystalline gold tabular nanoparticles, herein called nanoprisms (NPRs) due to their characteristic shape. Besides the novelty of the method to produce NPRs with an unprecedented high yield, the synthesis avoids the use of highly toxic cetyltrimethylammonium bromide (CTAB), the most widely used surfactant for the synthesis of gold anisotropic nanoparticles such as nanorods or nanoprisms. The method presented here allows for tuning the edge length of NPRs in the range of 100-170 nm by adjusting the final concentration/molar ratio of gold salt and reducing agent (thiosulfate), while the thickness of NPRs remained constant (9 nm). Thus, the surface plasmon band of NPRs can be set along the near-infrared (NIR) range. The resulting NPRs were derivatized with heterobifunctional polyethylene glycol (PEG) and 4-aminophenyl β-D-glucopyranoside (glucose) chains to improve their stability and cellular uptake, respectively. The heating properties of colloidal solutions of NPRs upon 1064 nm light illumination were evaluated. As a proof of concept, the biocompatibility and suitability of functional NPRs as photothermal agents were studied in cell cultures. Due to their biocompatibility (avoiding CTAB), ease of production, ease of functionalization, and remarkable heating features, the NPRs discussed herein represent a significant advance in the biocompatibility of nanoparticles and serve as an attractive alternative to those currently in use as plasmonic photothermal agents.


ACS Applied Materials & Interfaces | 2011

Designing Novel Hybrid Materials by One-Pot Co-condensation: From Hydrophobic Mesoporous Silica Nanoparticles to Superamphiphobic Cotton Textiles

Clara Pereira; C. Alves; A. Monteiro; C. Magen; A. M. Pereira; A. Ibarra; M. R. Ibarra; Pedro B. Tavares; J. P. Araújo; Ginesa Blanco; José M. Pintado; Ana P. Carvalho; J. Pires; M.F.R. Pereira; Cristina Freire

This work reports the synthesis and characterization of mesoporous silica nanoparticles (MSNs) functionalized with tridecafluorooctyltriethoxysilane (F13) and their in situ incorporation onto cotton textiles. The hybrid MSNs and the functional textiles were prepared by a one-pot co-condensation methodology between tetraethylorthosilicate (TEOS) and F13, with hexadecyltrimethylammonium chloride (CTAC) as the template and triethanolamine as the base. The influence of the F13 to TEOS molar ratio (1:10, 1:5 and 1:3) on the nanoparticle morphology, porosity, degree of functionalization, and hydro/oleophobic properties is discussed. The hybrid nanosilicas presented high colloidal stability and were spherical and monodispersed with average particle size of ∼45 nm. They also showed high surface areas, large pore volumes, and a wormhole-type mesoporous structure. The increase in the organosilane proportion during the co-condensation process led to a more radially branched wormhole-like mesoporosity, a decrease in the surface area, pore volume, and amount of surface silanol groups, and an enrichment of the surface with fluorocarbon moieties. These changes imparted hydrophobic and oleophobic properties to the materials, especially to that containing the highest F13 loading. Cotton textiles were coated with the F13-MSNs through an efficient and less time-consuming route. The combination between surface roughness and mesoporosity imparted by the MSNs, and the low surface energy provided by the organosilane resulted in superhydrophobic functional textiles. Moreover, the textile with the highest loading of fluorocarbon groups was superamphiphobic.


ACS Nano | 2011

Ultrasmall Functional Ferromagnetic Nanostructures Grown by Focused Electron-Beam-Induced Deposition

Luis Serrano-Ramón; R. Córdoba; Luis A. Rodríguez; C. Magen; E. Snoeck; Christophe Gatel; Inés Serrano; M. R. Ibarra; José María de Teresa

We have successfully grown ultrasmall cobalt nanostructures (lateral size below 30 nm) by optimization of the growth conditions using focused electron-beam-induced deposition techniques. This direct-write nanolithography technique is thus shown to produce unprecedented resolution in the growth of magnetic nanostructures. The challenging magnetic characterization of such small structures is here carried out by means of electron holography techniques. Apart from growing ultranarrow nanowires, very small Hall sensors have been created and their large response has been unveiled.


Nano Letters | 2012

Incommensurate van der Waals epitaxy of nanowire arrays: a case study with ZnO on muscovite mica substrates.

Muhammad Iqbal Bakti Utama; Francisco J. Belarre; C. Magen; Bo Peng; Jordi Arbiol; Qihua Xiong

The requirement of lattice matching between a material and its substrate for the growth of defect-free heteroepitaxial crystals can be circumvented with van der Waals epitaxy (vdWE). However, the utilization and characteristics of vdWE in nonlamellar/nonplanar nanoarchitectures are still not very well-documented. Here we establish the characteristics of vdWE in nanoarchitectures using a case study of ZnO nanowire (NW) array on muscovite mica substrate without any buffer/seed layer. With extensive characterizations involving electron microscopy, diffractometry, and the related analyses, we conclude that the NWs grown via vdWE exhibit an incommensurate epitaxy. The incommensurate vdWE allows a nearly complete lattice relaxation at the NW-substrate heterointerface without any defects, thus explaining the unnecessity of lattice matching for well-crystallized epitaxial NWs on muscovite mica. We then determine the polarity of the NW via a direct visualization of Zn-O dumbbells using the annular bright field scanning transmission electron miscroscopy (ABF-STEM) in order to identify which atoms are at the base of the NWs and responsible for the van der Waals interactions. The information from the ABF-STEM is then used to construct the proper atomic arrangement at the heterointerface with a 3D atomic modeling to corroborate the characteristics of the incommensurate vdWE. Our findings suggest that the vdWE might be extended for a wider varieties of compounds and epitaxial nanoarchitectures to serve as a universal epitaxy strategy.

Collaboration


Dive into the C. Magen's collaboration.

Top Co-Authors

Avatar

P. A. Algarabel

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Morellon

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J. A. Pardo

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jordi Arbiol

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge