Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Mark Ott is active.

Publication


Featured researches published by C. Mark Ott.


Microbiology and Molecular Biology Reviews | 2004

Microbial Responses to Microgravity and Other Low-Shear Environments

Cheryl A. Nickerson; C. Mark Ott; James W. Wilson; Rajee Ramamurthy; Duane L. Pierson

SUMMARY Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression, physiology, and pathogenesis. In addition to analyzing fundamental questions about microbial responses to spaceflight, these studies have demonstrated important applications for microbial responses to a ground-based, low-shear stress environment similar to that encountered during spaceflight. Moreover, the low-shear growth environment sensed by microbes during microgravity of spaceflight and during ground-based microgravity analogue culture is relevant to those encountered during their natural life cycles on Earth. While no mechanism has been clearly defined to explain how the mechanical force of fluid shear transmits intracellular signals to microbial cells at the molecular level, the fact that cross talk exists between microbial signal transduction systems holds intriguing possibilities that future studies might reveal common mechanotransduction themes between these systems and those used to sense and respond to low-shear stress and changes in gravitation forces. The study of microbial mechanotransduction may identify common conserved mechanisms used by cells to perceive changes in mechanical and/or physical forces, and it has the potential to provide valuable insight for understanding mechanosensing mechanisms in higher organisms. This review summarizes recent and future research trends aimed at understanding the dynamic effects of changes in the mechanical forces that occur in microgravity and other low-shear environments on a wide variety of important microbial parameters.


Nature Reviews Microbiology | 2010

Organotypic 3D cell culture models: using the rotating wall vessel to study host–pathogen interactions

Jennifer Barrila; Andrea L. Radtke; Aurélie Crabbé; Shameema Sarker; Melissa M. Herbst-Kralovetz; C. Mark Ott; Cheryl A. Nickerson

Appropriately simulating the three-dimensional (3D) environment in which tissues normally develop and function is crucial for engineering in vitro models that can be used for the meaningful dissection of host–pathogen interactions. This Review highlights how the rotating wall vessel bioreactor has been used to establish 3D hierarchical models that range in complexity from a single cell type to multicellular co-culture models that recapitulate the 3D architecture of tissues observed in vivo. The application of these models to the study of infectious diseases is discussed.


Infection and Immunity | 2000

Microgravity as a Novel Environmental Signal Affecting Salmonella enterica Serovar Typhimurium Virulence

Cheryl A. Nickerson; C. Mark Ott; Sarah J. Mister; Brian J. Morrow; Lisa Burns-Keliher; Duane L. Pierson

ABSTRACT The effects of spaceflight on the infectious disease process have only been studied at the level of the host immune response and indicate a blunting of the immune mechanism in humans and animals. Accordingly, it is necessary to assess potential changes in microbial virulence associated with spaceflight which may impact the probability of in-flight infectious disease. In this study, we investigated the effect of altered gravitational vectors on Salmonella virulence in mice. Salmonella enterica serovar Typhimurium grown under modeled microgravity (MMG) were more virulent and were recovered in higher numbers from the murine spleen and liver following oral infection compared to organisms grown under normal gravity. Furthermore, MMG-grown salmonellae were more resistant to acid stress and macrophage killing and exhibited significant differences in protein synthesis than did normal-gravity-grown cells. Our results indicate that the environment created by simulated microgravity represents a novel environmental regulatory factor of Salmonellavirulence.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon

James W. Wilson; Rajee Ramamurthy; Steffen Porwollik; Michael McClelland; Timothy G. Hammond; Patricia L. Allen; C. Mark Ott; Duane L. Pierson; Cheryl A. Nickerson

The low-shear environment of optimized rotation suspension culture allows both eukaryotic and prokaryotic cells to assume physiologically relevant phenotypes that have led to significant advances in fundamental investigations of medical and biological importance. This culture environment has also been used to model microgravity for ground-based studies regarding the impact of space flight on eukaryotic and prokaryotic physiology. We have previously demonstrated that low-shear modeled microgravity (LSMMG) under optimized rotation suspension culture is a novel environmental signal that regulates the virulence, stress resistance, and protein expression levels of Salmonella enterica serovar Typhimurium. However, the mechanisms used by the cells of any species, including Salmonella, to sense and respond to LSMMG and identities of the genes involved are unknown. In this study, we used DNA microarrays to elucidate the global transcriptional response of Salmonella to LSMMG. When compared with identical growth conditions under normal gravity (1 × g), LSMMG differentially regulated the expression of 163 genes distributed throughout the chromosome, representing functionally diverse groups including transcriptional regulators, virulence factors, lipopolysaccharide biosynthetic enzymes, iron-utilization enzymes, and proteins of unknown function. Many of the LSMMG-regulated genes were organized in clusters or operons. The microarray results were further validated by RT-PCR and phenotypic analyses, and they indicate that the ferric uptake regulator is involved in the LSMMG response. The results provide important insight about the Salmonella LSMMG response and could provide clues for the functioning of known Salmonella virulence systems or the identification of uncharacterized bacterial virulence strategies.


Journal of Microbiological Methods | 2003

Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis

Cheryl A. Nickerson; C. Mark Ott; James W. Wilson; Rajee Ramamurthy; C. L. LeBlanc; Kerstin Höner zu Bentrup; Timothy G. Hammond; Duane L. Pierson

Bacteria inhabit an impressive variety of ecological niches and must adapt constantly to changing environmental conditions. While numerous environmental signals have been examined for their effect on bacteria, the effects of mechanical forces such as shear stress and gravity have only been investigated to a limited extent. However, several important studies have demonstrated a key role for the environmental signals of low shear and/or microgravity in the regulation of bacterial gene expression, physiology, and pathogenesis [Chem. Rec. 1 (2001) 333; Appl. Microbiol. Biotechnol. 54 (2000) 33; Appl. Environ. Microbiol. 63 (1997) 4090; J. Ind. Microbiol. 18 (1997) 22; Curr. Microbiol. 34(4) (1997) 199; Appl. Microbiol. Biotechnol. 56(3-4) (2001) 384; Infect Immun. 68(6) (2000) 3147; Cell 109(7) (2002) 913; Appl. Environ. Microbiol. 68(11) (2002) 5408; Proc. Natl. Acad. Sci. U. S. A. 99(21) (2002) 13807]. The response of bacteria to these environmental signals, which are similar to those encountered during prokaryotic life cycles, may provide insight into bacterial adaptations to physiologically relevant conditions. This review focuses on the current and potential future research trends aimed at understanding the effect of the mechanical forces of low shear and microgravity analogues on different bacterial parameters. In addition, this review also discusses the use of microgravity technology to generate physiologically relevant human tissue models for research in bacterial pathogenesis.


Brain Behavior and Immunity | 2004

Changes in neutrophil functions in astronauts.

Indreshpal Kaur; Elizabeth R. Simons; Victoria A. Castro; C. Mark Ott; Duane L. Pierson

Exploration class human spaceflight missions will require astronauts with robust immune systems. Innate immunity will be an essential element for the healthcare maintenance of astronauts during these lengthy expeditions. This study investigated neutrophil phagocytosis, oxidative burst, and degranulation of 25 astronauts after four space shuttle missions and in nine healthy control subjects. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch, immediately after landing, and 3 days after landing. The number of neutrophils increased by 85% at landing compared to preflight levels. The mean values for phagocytosis of Escherichia coli and oxidative burst capacity in neutrophils from astronauts on the 5-day mission were not significantly different from those observed in neutrophils from the control subjects. Before and after 9- to 11-day missions, however, phagocytosis and oxidative burst capacities were significantly lower than control mean values. No consistent changes in degranulation or expression of surface markers were observed before or after any of the space missions. This study indicates that neutrophil phagocytic and oxidative functions are affected by factors associated with space flight and this relationship may depend on mission duration.


PLOS ONE | 2008

Media ion composition controls regulatory and virulence response of Salmonella in spaceflight.

James W. Wilson; C. Mark Ott; Laura Quick; Richard Davis; Kerstin Höner zu Bentrup; Aurélie Crabbé; Emily Richter; Shameema Sarker; Jennifer Barrila; Steffen Porwollik; Pui Cheng; Michael McClelland; George Tsaprailis; Timothy Radabaugh; Andrea M. Hunt; Miti Shah; Mayra Nelman-Gonzalez; Steve Hing; Macarena Parra; Paula Dumars; Kelly Norwood; Ramona Bober; Jennifer Devich; Ashleigh Ruggles; Autumn Cdebaca; Satro Narayan; Joseph G. Benjamin; Carla Goulart; Mark Rupert; Luke Catella

The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth.


The Journal of Infectious Diseases | 2008

Varicella-Zoster Virus in the Saliva of Patients with Herpes Zoster

Satish K. Mehta; Stephen K. Tyring; Donald H. Gilden; Randall J. Cohrs; Melanie J. Leal; Victoria A. Castro; Alan H. Feiveson; C. Mark Ott; Duane L. Pierson

Fifty-four patients with herpes zoster were treated with valacyclovir. On treatment days 1, 8, and 15, pain was scored and saliva examined for varicella-zoster virus (VZV) DNA. VZV DNA was found in every patient the day treatment was started and later disappeared in 82%. There was a positive correlation between the presence of VZV DNA and pain and between VZV DNA copy number and pain (P <.0005). VZV DNA was present in 1 patient before rash and in 4 after pain resolved and was not present in any of 6 subjects with chronic pain or in 14 healthy subjects. Analysis of human saliva has potential usefulness in the diagnosis of neurological disease produced by VZV without rash.


Applied and Environmental Microbiology | 2011

Induction of Attachment-Independent Biofilm Formation and Repression of hfq Expression by Low-Fluid-Shear Culture of Staphylococcus aureus

Sarah L. Castro; Mayra Nelman-Gonzalez; Cheryl A. Nickerson; C. Mark Ott

ABSTRACT The opportunistic pathogen Staphylococcus aureus encounters a wide variety of fluid shear levels within the human host, and they may play a key role in dictating whether this organism adopts a commensal interaction with the host or transitions to cause disease. By using rotating-wall vessel bioreactors to create a physiologically relevant, low-fluid-shear environment, S. aureus was evaluated for cellular responses that could impact its colonization and virulence. S. aureus cells grown in a low-fluid-shear environment initiated a novel attachment-independent biofilm phenotype and were completely encased in extracellular polymeric substances. Compared to controls, low-shear-cultured cells displayed slower growth and repressed virulence characteristics, including decreased carotenoid production, increased susceptibility to oxidative stress, and reduced survival in whole blood. Transcriptional whole-genome microarray profiling suggested alterations in metabolic pathways. Further genetic expression analysis revealed downregulation of the RNA chaperone Hfq, which parallels low-fluid-shear responses of certain Gram-negative organisms. This is the first study to report an Hfq association with fluid shear in a Gram-positive organism, suggesting an evolutionarily conserved response to fluid shear among structurally diverse prokaryotes. Collectively, our results suggest S. aureus responds to a low-fluid-shear environment by initiating a biofilm/colonization phenotype with diminished virulence characteristics, which could lead to insight into key factors influencing the divergence between infection and colonization during the initial host-pathogen interaction.


Applied and Environmental Microbiology | 2007

Novel quantitative biosystem for modeling physiological fluid shear stress on cells

Eric A. Nauman; C. Mark Ott; Ed Sander; Don L. Tucker; Duane L. Pierson; James W. Wilson; Cheryl A. Nickerson

ABSTRACT The response of microbes to changes in the mechanical force of fluid shear has important implications for pathogens, which experience wide fluctuations in fluid shear in vivo during infection. However, the majority of studies have not cultured microbes under physiological fluid shear conditions within a range commonly encountered by microbes during host-pathogen interactions. Here we describe a convenient batch culture biosystem in which (i) the levels of fluid shear force can be varied within physiologically relevant ranges and quantified via mathematical models and (ii) large numbers of cells can be planktonically grown and harvested to examine the effect of fluid shear levels on microbial genomic and phenotypic responses. A quantitative model based on numerical simulations and in situ imaging analysis was developed to calculate the fluid shear imparted by spherical beads of different sizes on bacterial cell cultures grown in a rotating wall vessel (RWV) bioreactor. To demonstrate the application of this model, we subjected cultures of the bacterial pathogen Salmonella enterica serovar Typhimurium to three physiologically-relevant fluid shear ranges during growth in the RVW and demonstrated a progressive relationship between the applied fluid shear and the bacterial genetic and phenotypic responses. By applying this model to different cell types, including other bacterial pathogens, entire classes of genes and proteins involved in cellular interactions may be discovered that have not previously been identified during growth under conventional culture conditions, leading to new targets for vaccine and therapeutic development.

Collaboration


Dive into the C. Mark Ott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Davis

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge