C. Martin Gaskell
University of Texas at Austin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Martin Gaskell.
New Astronomy Reviews | 2009
C. Martin Gaskell
I review progress made in understanding the nature of the broad-line region (BLR) of active galactic nuclei (AGNs) and the role BLRs play in the AGN phenomenon. The high equivalent widths of the lines imply a high BLR covering factor, and the absence of clear evidence for absorption by the BLR means that the BLR has a flattened distribution and that we always view it near pole-on. The BLR gas is strongly self-shielding near the equatorial plane. Velocity-resolved reverberation mapping has long strongly excluded significant outflow of the BLR and shows instead that the predominant motions are Keplerian with large turbulence and a significant net inflow. The rotation and turbulence are consistent with the inferred geometry. The blueshifting of high-ionization lines is a consequence of scattering off inflowing material rather than the result of an outflowing wind. The rate of inflow of the BLR is sufficient to provide the accretion rate needed to power the AGN. Because the motions of the BLR are gravitationally dominated, and the BLR structure is very similar in most AGNs, consistent black hole masses can be determined. The good correlation between these estimates and masses predicted from the bulge luminosities of host galaxies provides strong support for the similarity of AGN continuum shapes and the correctness of the BLR picture presented. It is concluded that although many mysteries remain about the details of how AGNs work, a general overall picture of the torus and BLR is becoming clear.
The Astrophysical Journal | 2004
C. Martin Gaskell; Rene W. Goosmann; Robert Antonucci; David Harold. Whysong
We present extinction curves derived from the broad emission lines and continua of samples of 72 radio-loud and 1018 radio-quiet active galactic nuclei (AGNs). The curves are significantly flatter in the UV than curves for the local interstellar medium. The reddening curves for the radio-quiet Large Bright Quasar Survey quasars are slightly steeper than those of the radio-loud quasars in the UV, probably because of additional reddening by dust farther out in the host galaxies of the former. The UV extinction curves for the radio-loud AGNs are very flat. This is explicable with slight modifications to standard Mathis-Rumpl-Nordsieck dust models: there is a relative lack of small grains in the nuclear dust. Our continuum and broad emission line reddening curves agree in both shape and amplitude, confirming that the continuum shape is indeed profoundly affected by reddening for all but the bluest AGNs. With correction by our generic extinction curve, all of the radio-loud AGNs have optical-UV continuous spectra consistent with a single shape. We show that radio-quiet AGNs have very similar intrinsic UV to optical shape over orders of magnitude in luminosity. We also argue that radio-loud and radio-quiet AGNs probably share the same underlying continuum shape and that most of the systematic differences between their observed continuum shapes are due to higher nuclear reddening in radio-selected AGNs and additional reddening from dust farther out in the host galaxies in radio-quiet AGNs. Our conclusions have important implications for the modeling of quasar continua and the analysis of quasar demographics.
The Astrophysical Journal | 1996
C. Martin Gaskell
Analysis of spectra of the quasar 3C 390.3 covering a period of over 20 yr shows that the blueshifted peak of Hβ has been changing its radial velocity at an almost constant rate during this time. The radial velocity has increased by over 1500 km s-1. The lower limit to the period of radial velocity changes is 210 yr. Although very long periods cannot be excluded by the radial velocity curve alone, other considerations suggest that the period is ~300 yr. If the radial velocity changes are due to orbital motion, the radius of the orbit is ~0.3 pc and the total mass of the system is ~7 × 109 M☉. In the binary black hole model, the masses of the two holes are ~2.2 × 109 M☉ and ~4.4 × 109 M☉. A possible third peak claimed to be present in some 1974-1975 spectra is shown to be an instrumental artifact. The narrowness of the displaced peaks in 3C 390.3 objects requires that the broad-line region cloud motions are not governed solely by gravity. The black hole masses derived by Koratkar & Gaskell need to be increased significantly. This probably lowers accretion efficiencies to less than 1% of the Eddington limit.
The Astrophysical Journal | 2009
Ritaban Chatterjee; Alan P. Marscher; Svetlana G. Jorstad; Alice R. Olmstead; I. M. McHardy; Margo F. Aller; Hugh D. Aller; A. Lähteenmäki; M. Tornikoski; T. Hovatta; K. B. Marshall; H. Richard Miller; Wesley T. Ryle; Benjamin Chicka; A. J. Benker; Mark Clinton Bottorff; David Brokofsky; Jeffrey S. Campbell; Taylor S. Chonis; C. Martin Gaskell; Evelina R. Gaynullina; K. Grankin; Cecelia H. Hedrick; Mansur A. Ibrahimov; Elizabeth S. Klimek; Amanda K. Kruse; Shoji Masatoshi; Thomas R. Miller; Hong Jian Pan; Eric A. Petersen
We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 120 between 2002 and 2007 at X-ray (2-10 keV), optical (R and V bands), and radio (14.5 and 37 GHz) wave bands, as well as imaging with the Very Long Baseline Array (VLBA) at 43 GHz. Over the 5 yr of observation, significant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. Consistent with this, the X-ray flux and 37 GHz flux are anti-correlated with X-ray leading the radio variations. Furthermore, the total radiative output of a radio flare is related to the equivalent width of the corresponding X-ray dip. This implies that, in this radio galaxy, the radiative state of accretion disk plus corona system, where the X-rays are produced, has a direct effect on the events in the jet, where the radio emission originates. The X-ray power spectral density of 3C 120 shows a break, with steeper slope at shorter timescale and the break timescale is commensurate with the mass of the central black hole (BH) based on observations of Seyfert galaxies and black hole X-ray binaries (BHXRBs). These findings provide support for the paradigm that BHXRBs and both radio-loud and radio-quiet active galactic nuclei are fundamentally similar systems, with characteristic time and size scales linearly proportional to the mass of the central BH. The X-ray and optical variations are strongly correlated in 3C 120, which implies that the optical emission in this object arises from the same general region as the X-rays, i.e., in the accretion disk-corona system. We numerically model multi-wavelength light curves of 3C 120 from such a system with the optical-UV emission produced in the disk and the X-rays generated by scattering of thermal photons by hot electrons in the corona. From the comparison of the temporal properties of the model light curves to that of the observed variability, we constrain the physical size of the corona and the distances of the emitting regions from the central BH. In addition, we discuss physical scenarios for the disk-jet connection that are consistent with our observations.
The Astronomical Journal | 2008
Taylor S. Chonis; C. Martin Gaskell
We discuss the use of Sloan Digital Sky Survey (SDSS) ugriz point-spread function (PSF) photometry for setting the zero points of UBVRI CCD images. From a comparison with the Landolt (1992) standards and our own photometry we find that there is a fairly abrupt change in B, V, R, & I zero points around g, r, i � 14.5, and in the U zero point at u � 16. These changes correspond to where there is significant interpolation due to saturation in the SDSS PSF fluxes. There also seems to be another, much smaller systematic effect for stars with g, r & 19.5. The latter effect is consistent with a small Malmquist bias. Because of the difficulties with PSF fluxes of brighter stars, we recommend that comparisons of ugriz and UBVRI photometry should only be made for unsaturated stars with g, r and i in the range 14.5 – 19.5, and u in the range 16 – 19.5. We give a prescription for setting the UBV RI zero points for CCD images, and general equations for transforming from ugriz to UBVRI.
The Astrophysical Journal | 1989
J. A. Baldwin; E. Joseph Wampler; C. Martin Gaskell
Spectrophotometry of two complete samples of quasars, one obtained from the flat radio spectra of the objects and the other from their optical colors, is presented. It is confirmed that the equivalent widths of the major UV emission lines decrease with increasing continuum luminosity (the Baldwin effect) and that the (Ly-alpha + N V)/C IV and 1909 A/C IV intensity ratios are also luminosity-dependent by virtue of the C IV luminosity dependence. It is shown that the Mg II/C IV intensity ratio and possibly the strengths of the blue Fe II emission features and the FWHM of the 1909 A blend are luminosity-dependent. These results generally support the Mushotzky and Ferland (1984) interpretation of the Baldwin effect in terms of a weak inverse correlation between the continuum luminosity and ionization parameter.
The Astrophysical Journal | 2005
Jack Raymond Gabel; Nahum Arav; J. S. Kaastra; Gerard A. Kriss; Ehud Behar; Elisa Costantini; C. Martin Gaskell; Kirk T. Korista; Ari Laor; Frits Paerels; Daniel Proga; Jessica Kim Quijano; M. Sako; Jennifer Scott; Katrien C. Steenbrugge
We present an analysis of the intrinsic UV absorption in the Seyfert 1 galaxy Mrk 279 based on simultaneous long observations with the Hubble Space Telescope (41 ks) and the Far Ultraviolet Spectroscopic Explorer (91 ks). To extract the line-of-sight covering factors and ionic column densities, we separately fit two groups of absorption lines: the Lyman series and the CNO lithium-like doublets. For the CNO doublets we assume that all three ions share the same covering factors. The fitting method applied here overcomes some limitations of the traditional method using individual doublet pairs; it allows for the treatment of more complex, physically realistic scenarios for the absorption-emission geometry and eliminates systematic errors that we show are introduced by spectral noise. We derive velocity-dependent solutions based on two models of geometrical covering: a single covering factor for all background emission sources, and separate covering factors for the continuum and emission lines. Although both models give good statistical fits to the observed absorption, we favor the model with two covering factors because (1) the best-fit covering factors for both emission sources are similar for the independent Lyman series and CNO doublet fits; (2) the fits are consistent with full coverage of the continuum source and partial coverage of the emission lines by the absorbers, as expected from the relative sizes of the nuclear emission components; and (3) it provides a natural explanation for variability in the Lyα absorption detected in an earlier epoch. We also explore physical and geometrical constraints on the outflow from these results.We present an analysis of the intrinsic UV absorption in the Seyfert 1 galaxy Mrk 279 based on simultaneous long observations with the Hubble Space Telescope (41 ks) and the Far Ultraviolet Spectroscopic Explorer (91 ks). To extract the line-of-sight covering factors and ionic column densities, we separately fit two groups of absorption lines: the Lyman series and the CNO lithium-like doublets. For the CNO doublets we assume that all three ions share the same covering factors. The fitting method applied here overcomes some limitations of the traditional method using individual doublet pairs; it allows for the treatment of more complex, physically realistic scenarios for the absorption-emission geometry and eliminates systematic errors that we show are introduced by spectral noise. We derive velocity-dependent solutions based on two models of geometrical covering – a single covering factor for all background emission sources, and separate covering factors for the continuum and emission lines. Although both models give good statistical fits to the observed absorption, we favor the model with two covering factors because: (a) the best-fit covering factors for both emission sources are similar for the independent Lyman series and CNO doublet fits; (b) the fits are consistent with full coverage of the continuum source and partial coverage of the emission lines by the absorbers, as expected from the relative sizes of the nuclear emission components; and (c) it provides a natural explanation for variability in the Lyα absorption detected in an earlier epoch. We also explore physical and geometrical constraints on the outflow from these results. Subject headings: galaxies: individual (Mrk 279) — galaxies: active — galaxies: Seyfert — ultraviolet: galaxies
The Astrophysical Journal | 2013
C. Martin Gaskell; Rene W. Goosmann
Velocity-resolved reverberation mapping suggests that the broad-line regions (BLRs) of active galactic nuclei (AGNs) can have significant net inflow. We use the STOKES radiative transfer code to show that electron and Rayleigh scattering off the BLR and torus naturally explains the blueshifted profiles of high-ionization lines and the ionization dependence of the blueshifts. This result is insensitive to the geometry of the scattering region. If correct, then this model resolves the long-standing conflict between the absence of outflow implied by velocity-resolved reverberation mapping and the need for outflow if the blueshifting is the result of obscuration. The accretion rate implied by the inflow is sufficient to power the AGN. We suggest that the BLR is part of the outer accretion disk and that similar magnetohydrodynamic processes are operating. In the scattering model, the blueshifting is proportional to the accretion rate so high-accretion-rate AGNs will show greater high-ionization line blueshifts, as is observed. Scattering can lead to systematically too high black hole mass estimates from the C IV line. We note many similarities between narrow-line region (NLR) and BLR blueshiftings, and suggest that NLR blueshiftings have a similar explanation. Our model explains the higher blueshifts of broad absorption line QSOs if they are more highly inclined. Rayleigh scattering from the BLR and torus could be more important in the UV than electron scattering for predominantly neutral material around AGNs. The importance of Rayleigh scattering versus electron scattering can be assessed by comparing line profiles at different wavelengths arising from the same emission-line region.
The Astrophysical Journal | 2007
Nahum Arav; Jack Raymond Gabel; Kirk T. Korista; J. S. Kaastra; Gerard A. Kriss; Ehud Behar; Elisa Costantini; C. Martin Gaskell; Ari Laor; C. Nalaka Kodituwakku; Daniel Proga; Masao Sako; Jennifer Scott; Katrien C. Steenbrugge
We present the first reliable determination of chemical abundances in an active galactic nucleus (AGN) outflow. The abundances are extracted from the deep and simultaneous Far Ultraviolet Spectroscopic Explorer (FUSE) and Hubble Space Telescope (HST) STIS observations of Mrk 279. This data set is exceptional for its high signal-to-noise ratio, unblended doublet troughs, and little Galactic absorption contamination. These attributes allow us to solve for the velocity-dependent covering fraction and therefore obtain reliable column densities for many ionic species. For the first time, we have enough such column densities to simultaneously determine the ionization equilibrium and abundances in the flow. Our analysis uses the full spectral information embedded in these high-resolution data. Slicing a given trough into many independent outflow elements yields the extra constraints needed for a physically meaningful abundance determination. We find that relative to solar, the abundances in the Mrk 279 outflow are (linear scaling) carbon 2.2 ± 0.7, nitrogen 3.5 ± 1.1, and oxygen 1.6 ± 0.8. Our UV-based photoionization and abundance results are in good agreement with the independent analysis of the simultaneous Mrk 279 X-ray spectra. This is the best agreement between the UV and X-ray analyses of the same outflow to date.
Astronomy and Astrophysics | 2007
Rene W. Goosmann; C. Martin Gaskell
Context. Spectropolarimetry of AGNs is a powerful tool for studying the structure and kinematics of the inner regions of quasars. Aims. We wish to investigate the effects of various AGN scattering region geometries on the polarized flux. Methods. We introduce a new, publicly available Monte Carlo radiative transfer code, Stokes, which models polarization induced by scattering off free electrons and dust grains. We model a variety of regions in AGNs. Results. We find that the shape of the funnel of the dusty torus has a sign ificant impact on the polarization e ffi ciency. A compact torus with a steep inner surface scatters more light toward t ype-2 viewing angles than a large torus of the same half-opening angle, �0. For �0 60 ◦ it is polarized parallel to the symmetry axis. In between these intervals the orientation of the polarization depends on the viewing angle. The degree of polarization ranges between 0% and 20% and is wavelength independent for a large range of �0. Observed wavelength-independent optical and near-UV polarization thus does not necessarily imply electron scattering. Spectropolarimetry at rest-fr ame wavelengths less than 2500 A may distinguish between dust and electron scattering but is not conclusive in all cases. For polar dust, s cattering spectra are reddened for type-1 viewing angles, and made bluer for type-2 viewing angles. Polar electron-scattering co nes are very effi cient polarizers at type-2 viewing angles, whilst the polar ized flux of the torus is weak. Conclusions. We predict that the net polarization of Seyfert-2 galaxies decreases with luminosity, and conclude that the degree of polarization should be correlated with the relative streng th of the thermal IR flux. We find that a flattened, equatorial, e lectronscattering disk, of relatively low optical depth, reproduc es type-1 polarization. This is insensitive to the exact geo metry, but the observed polarization requires a limited range of optical d epth.