Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Mateescu is active.

Publication


Featured researches published by C. Mateescu.


Chemistry Central Journal | 2012

Tracking antioxidant properties and color changes in low-sugar bilberry jam as effect of processing, storage and pectin concentration

Mariana-Atena Poiana; Ersilia Alexa; C. Mateescu

BackgroundRecently, an increased interest in the identification of valuable possibilities for preserving the antioxidant properties of products obtained by thermal processing of fruits rich in bioactive compounds can be noticed. In this regard, an extensive analysis is necessary in terms of thermal processed products behavior in relation to various factors. The purpose of the present study was to assess the effect which processing and storage at 20°C has on the antioxidant properties and color quality of low-sugar bilberry jam with different low-methoxyl pectin (LMP) concentrations.ResultsFor all measured parameters, it should be noted that thermal processing induced significant alterations reported to the values registered for fresh fruit. Most important losses due to thermal processing were recorded for total monomeric anthocyanins (TMA) (81-84%), followed by L-ascorbic acid (L-AsAc) content (53-58%), total phenolics (TP) content (42-51%) and FRAP (ferric reducing antioxidant power) values (36-47%). Moreover, depreciation of the investigated compounds occurred during storage at 20°C. Jam storage for 7 months resulted in severe losses in TMA content in the range 58-72% from the value recorded one day after processing. This coincided with marked increases in polymeric color percent of these products after 7 months of storage. Also, bilberry jam storage for 7 months resulted in a decrease in L-AsAc content of 40-53% from the value recorded one day after processing, 41-57% in TP content and 33-46% from the value recorded one day after processing for FRAP values. By decreasing of LMP concentration in the jam recipe from 1 to 0.3% there has been an increase in losses of investigated compounds.ConclusionOverall, the results indicated that bilberry jams can also represent a good source of antioxidant compounds, although compared to the fruit, important losses seem to occur. Practical application of this work is that this kind of information will be very useful in optimizing the jam processing technology and storage conditions, in order to improve the quality of these products.


Inorganic Chemistry | 2010

Hydrothermal synthesis and characterization of 2D M(II)-Quinate (M = Co,Zn) metal-organic lattice assemblies: solid-state solution structure correlation in M(II)-hydroxycarboxylate systems.

M. Menelaou; A. Konstantopai; Nikolia Lalioti; Catherine P. Raptopoulou; Vassilis Psycharis; Aris Terzis; C. Mateescu; K. Tsarhopoulos; Pantelis G. Rigas; Athanasios Salifoglou

Co(II) and Zn(II) ions exhibit variable reactivity toward O-containing ligands in aqueous media, affording isolable materials with distinct solid-state lattice properties. d-(-)-quinic acid is a cellular α-hydroxycarboxylate metal ion binder, which reacts with Co(II) and Zn(II) under pH-specific hydrothermal conditions, leading to the isolation of two new species [Co(2)(C(7)H(11)O(6))(4)](n)·nH(2)O (1) and [Zn(3)(C(7)H(11)O(6))(6)](n)·nH(2)O (2). Compound 1 was characterized by elemental analysis, spectroscopic techniques (FT-IR, UV-visible, EPR), magnetic studies, and X-ray crystallography. Compound 2 was characterized by elemental analysis, spectroscopic techniques (FT-IR, ESI-MS), and X-ray crystallography. The 2D molecular lattices in 1 and 2 reveal the presence of octahedral M(II) units bound exclusively to quinate in a distinct fashion, thereby projecting a unique chemical reactivity in each investigated system. The magnetic susceptibility and solid-state/frozen solution EPR data on 1 support the presence of a high-spin octahedral Co(II) in an oxygen environment, having a ground state with an effective spin of S = 1/2. Concurrent aqueous speciation studies on the binary Zn(II)-quinate system unravel the nature and properties of species arising from Zn(II)-quinate interactions as a function of pH and molar ratio. The physicochemical profiles of 1 and 2, in the solid state and in solution, earmark the importance of (a) select synthetic hydrothermal reactivity conditions, affording new well-defined lattice dimensionality and nuclearity M(II)-quinate materials, (b) structural speciation approaches delineating solid state-aqueous solution correlations in the binary M(II)-quinate systems, and (c) pH-specific chemical reactivity in binary M(II)-quinate systems reflecting structurally unique associations of simple aqueous complexes into distinctly assembled 2D crystalline lattices.


Inorganic Chemistry | 2012

pH-Specific structural speciation of the ternary V(V)-peroxido-betaine system: a chemical reactivity-structure correlation.

C. Gabriel; Efrosini Kioseoglou; Venetis J; Vassilis Psycharis; Catherine P. Raptopoulou; Aris Terzis; G. Voyiatzis; Marko Bertmer; C. Mateescu; Athanasios Salifoglou

Vanadium involvement in cellular processes requires deep understanding of the nature and properties of its soluble and bioavailable forms arising in aqueous speciations of binary and ternary systems. In an effort to understand the ternary vanadium-H(2)O(2)-ligand interactions relevant to that metal ions biological role, synthetic efforts were launched involving the physiological ligands betaine (Me(3)N(+)CH(2)CO(2)(-)) and H(2)O(2). In a pH-specific fashion, V(2)O(5), betaine, and H(2)O(2) reacted and afforded three new, unusual, and unique compounds, consistent with the molecular formulation K(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·H(2)O (1), (NH(4))(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·0.75H(2)O (2), and {Na(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}(2)]}(n)·4nH(2)O (3). All complexes 1-3 were characterized by elemental analysis; UV/visible, FT-IR, Raman, and NMR spectroscopy in solution and the solid state; cyclic voltammetry; TGA-DTG; and X-ray crystallography. The structures of 1 and 2 reveal the presence of unusual ternary dinuclear vanadium-tetraperoxido-betaine complexes containing [(V(V)═O)(O(2))(2)] units interacting through long V-O bonds. The two V(V) ions are bridged through the oxygen terminal of one of the peroxide groups bound to the vanadium centers. The betaine ligand binds only one of the two V(V) ions. In the case of the third complex 3, the two vanadium centers are not immediate neighbors, with Na(+) ions (a) acting as efficient oxygen anchors and through Na-O bonds holding the two vanadium ions in place and (b) providing for oxygen-containing ligand binding leading to a polymeric lattice. In 1 and 3, interesting 2D (honeycomb) and 1D (zigzag chains) topologies of potassium nine-coordinate polyhedra (1) and sodium octahedra (3), respectively, form. The collective physicochemical properties of the three ternary species 1-3 project the chemical role of the low molecular mass biosubstrate betaine in binding V(V)-diperoxido units, thereby stabilizing a dinuclear V(V)-tetraperoxido dianion. Structural comparisons of the anions in 1-3 with other known dinuclear V(V)-tetraperoxido binary anionic species provide insight into the chemical reactivity of V(V)-diperoxido systems and their potential link to cellular events such as insulin mimesis and anitumorigenicity modulated by the presence of betaine.


Inorganic Chemistry | 2009

pH-Specific Synthetic Chemistry and Solution Studies in the Binary System of Iron(III) with the α-Hydroxycarboxylate Substrate Quinic Acid: Potential Relevance to Iron Chemistry in Plant Fluids

M. Menelaou; C. Mateescu; Hong Zhao; I. Rodriguez-Escudero; Nikolia Lalioti; Y. Sanakis; A. Simopoulos; Athanasios Salifoglou

Iron is an essential metal ion in plant growth and development. Mobilization and further use of that metal by cellular structures in metabolic pathways entails the existence of soluble forms complexed with indigenous organic substrates, such as the low molecular mass d-(-)-quinic acid. In an effort to understand the relevant aqueous chemistry involving well-defined forms of iron, research efforts were carried out on the binary Fe(III)-quinic acid system. pH-specific reactions of FeCl(3).6H(2)O with quinic acid in a molar ratio 1:3 led to the isolation of the mononuclear Fe(III)-quinate complexes, K[Fe(C(7)H(11)O(6))(3)].(OH).3H(2)O (1), (NH(4))[Fe(C(7)H(11)O(6))(3)].(OH) (2), and Na[Fe(C(7)H(11)O(6))(3)].(OH).8H(2)O (3). Compounds 1-3 were characterized by analytical, spectroscopic techniques (UV/vis, FT-IR, Electron Paramagnetic Resonance (EPR), and Mossbauer spectroscopy), cyclic voltammetry, and magnetic susceptibility measurements. Compound 1 crystallizes in P2(1)3, with a = 15.1693(9) A, V = 3490.6(4) A(3), and Z = 4. Compound 2 crystallizes in P2(1)3, with a = 15.2831(9) A, V = 3569.7(4) A(3), and Z = 4. Compound 3 crystallizes in P2(1)3, with a = 15.6019(14) A, V = 3797.8(6) A(3), and Z = 4. The X-ray crystal structures of 1-3 reveal a mononuclear Fe(III) ion bound by three quinates in an octahedral fashion. Each quinate ligand binds Fe(III) through the alpha-hydroxycarboxylate group as a singly deprotonated moiety, retaining the alcoholic hydrogen. EPR measurements in solution suggest that 1 dissociates, releasing free quinate. Solution speciation studies of the binary system (a) unravel the aqueous species distribution as a function of pH and reagent molar ratio, and (b) corroborate the EPR results proposing the existence of a neutral Fe(III)-quinate complex form. The collective physicochemical properties of 1-3 formulate a well-defined profile for the Fe(III) assembly in aqueous media and project structural features consistent with solubilized Fe(III)-hydroxycarboxylate binary forms potentially mobilized into plant (bio)chemical processes.


Inorganic Chemistry | 2009

pH-Dependent syntheses, structural and spectroscopic characterization, and chemical transformations of aqueous Co(II)-quinate complexes: an effort to delve into the structural speciation of the binary Co(II)-quinic acid system.

M. Menelaou; A. Konstantopai; C. Mateescu; Hong Zhao; Chryssoula Drouza; Nikolia Lalioti; Athanasios Salifoglou

Cobalt(II) is an essential metal ion, which can react with biologically relevant substrates in aqueous media, affording discrete soluble forms. D-(-)-quinic acid is a representative metal ion binder, capable of promoting reactions with Co(II) under pH-specific conditions, leading to the isolation of the new species K[Co(C(7)H(11)O(6))(3)] x 3 CH(3)CH(2)OH (1), Na[Co(C(7)H(11)O(6))(3)] x 3 CH(3)CH(2)OH x 2.25 H(2)O (2), and [Co(C(7)H(11)O(6))(2)(H(2)O)(2)] x 3 H(2)O (3). Compounds 1-3 were characterized by elemental analysis, spectroscopic techniques (Fourier-transform infrared, UV-visible, electron paramagnetic resonance (EPR), electrospray ionization mass spectrometry), magnetic studies, and X-ray crystallography. Compound 1 crystallizes in the cubic space group P2(1)3, with a = 15.3148(19) A, V = 3592.0(8) A(3), and Z = 4. Compound 2 crystallizes in the orthorhombic space group P2(1)2(1)2(1), with a = 14.9414(8) A, b = 15.9918(9) A, c = 16.0381(9) A, V = 3832.1(4) A(3), and Z = 4. Compound 3 crystallizes in the monoclinic space group P2(1)/m, with a = 13.2198(10) A, b = 5.8004(6) A, c = 15.3470(12) A, beta = 108.430(7), V = 1116.45(17) A(3), and Z = 4. The lattices in 1-3 reveal the presence of mononuclear Co(II) units bound exclusively to quinate (1 and 2) or quinate and water ligands (3), thus projecting the unique chemical reactivity in each investigated system and suggesting that 3 is an intermediate in the synthetic pathway leading to 1 and 2. The octahedral sites of Co(II) are occupied by oxygens, thereby reflecting the nature of interactions between the divalent metal ion and quinic acid. The magnetic and EPR data on 1 and 3 support the presence of a high-spin octahedral Co(II) in an oxygen environment, having a ground state with an effective spin of S = 1/2. The significance of 3 is further reflected into the aqueous speciation of the binary Co(II)-quinic acid system, in which 3 appears as a competent participant linked to the solid state species 1. The physicochemical profiles of 1-3, in the solid state and in solution, earmark the importance of aqueous structural speciation, which projects chemical reactivity pathways in the binary Co(II)-quinate system, involving soluble Co(II) forms emerging through interactions with low molecular mass O-containing physiological substrates, such as quinic acid.


Central European Journal of Chemistry | 2015

Use of ATR-FTIR spectroscopy to detect the changes in extra virgin olive oil by adulteration with soybean oil and high temperature heat treatment

Mariana-Atena Poiana; Ersilia Alexa; Melania-Florina Munteanu; Ramona Gligor; Diana Moigradean; C. Mateescu

Abstract The structural changes induced in extra virgin olive oil (EVOO) by adulteration with soybean oil (SBO) and heat treatment at 185°C for 4 and 8 h were investigated using Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR) spectroscopy. Our results revealed that the band around 3006 cm–1 recorded shifts versus the percentage of adulterant. The changes in the absorbance at 3006 cm−1 (A3006) and in the ratio of the maximum heights of the bands at 3006 and 2925 cm−1 (A3006/A2925) were used to evaluate the EVOO adulteration. The regression analysis of A3006 and A3006/A2925 versus the percentage of adulterant was used to calculate the detection limits of adulteration. The time course of spectral changes showed that the oil heating caused notable modifications in the intensity of the absorption bands and induced no shifts in their exact position. The most relevant changes were reflected by conjugation and cis-trans isomerisation of double bonds, the formation of epoxides and widening of the band in the C=O region due to formation of secondary oxidation products. This study highlights that ATR-FTIR spectroscopy may be a promising means to differentiate among pure and adulterated oils and to study the thermooxidative processes in oils undergoing thermal stress. Graphical Abstract


Inorganic Chemistry | 2011

A Unique Dinuclear Mixed V(V) Oxo-peroxo Complex in the Structural Speciation of the Ternary V(V)-Peroxo-citrate System. Potential Mechanistic and Structural Insight into the Aqueous Synthetic Chemistry of Dinuclear V(V)-Citrate Species with H2O2

Maria Kaliva; C. Gabriel; Catherine P. Raptopoulou; Aris Terzis; G. Voyiatzis; M. Zervou; C. Mateescu; Athanasios Salifoglou

Diverse vanadium biological activities entail complex interactions with physiological target ligands in aqueous media and constitute the crux of the undertaken investigation at the synthetic level. Facile aqueous redox reactions, as well as nonredox reactions, of V(III) and V(V) with physiological citric acid and hydrogen peroxide, under pH-specific conditions, led to the synthesis and isolation of a well-formed crystalline material upon the addition of ethanol as the precipitating solvent. Elemental analysis pointed to the molecular formulation (NH4)4[(VO2){VO(O2)}(C6H5O7)2]·1.5H2O (1). Complex 1 was further characterized by Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR), Raman spectroscopy, cyclic voltammetry, and X-ray crystallography. The crystallographic structure of 1 reveals the presence of the first dinuclear V(V)-citrate complex with non-peroxo- and peroxo-containing V(V) ions, concurrently present within the basic VV2O2 core. The nonperoxo unit VO2+ and the peroxo unit VO(O2)+ are each coordinated to a triply deprotonated citrate ligand in a distinct coordination mode and coordination geometry around the V(V) ions. These units are similar to those in homodinuclear complexes bearing oxo or peroxo groups. The unique assembly of both units in the anion of 1 renders the latter as a potential intermediate in the peroxidation process, from [V2O4(C6H5O7)2]4– to [V2O2(O2)2(C6H6O7)2]2–. The transformation reactions of 1 establish its connection with several V(V) and V(IV) dinuclear species present in the aqueous distribution of the V(IV,V)-citrate systems. The shown position of 1 as an intermediate in the mechanism of H2O2 addition to dinuclear V(V)-citrate species portends its role in the complex aqueous distribution of species in the ternary V(V)-peroxo-citrate system and its potential reactivity in (bio)chemically relevant media.


Inorganic Chemistry | 2013

Aromatic Chelator-Specific Lattice Architecture and Dimensionality in Binary and Ternary Cu(II)-Organophosphonate Materials

V. Georgantas; M. Menelaou; Vassilis Psycharis; Catherine P. Raptopoulou; Aris Terzis; Vasilis Tangoulis; C. Mateescu; Athanasios Salifoglou

Synthetic efforts linked to the design of defined lattice dimensionality and architecture materials in the binary/ternary systems of Cu(II) with butylene diamine tetra(methylene phosphonic acid) (H8BDTMP) and heterocyclic organic chelators (pyridine and 1,10-phenanthroline) led to the isolation of new copper organophosphonate compounds, namely, Na6[Cu2(BDTMP)(H2O)4]·[Cu2(BDTMP)(H2O)4]0.5·26H2O (1), [Cu2(H4BDTMP)(py)4]·2H2O (2), and [Cu2(H4BDTMP)(phen)2]n·6.6nH2O·1.5nMeOH (3). 1-3 are the first compounds isolated from the Cu(II)-BDTMP family of species. They were characterized by elemental analysis, spectroscopic techniques (FT-IR, UV-vis), magnetic susceptibility, TGA-DTG, cyclic voltammetry, and X-ray crystallography. The lattice in 1 reveals the presence of discrete dinuclear Cu(II) units bound to BDTMP(8-) and water molecules in a square pyramidal geometry. The molecular lattice of 2 reveals the presence of ternary dinuclear assemblies of Cu(II) ions bound to H4BDTMP(4-) and pyridine in a square pyramidal environment. The molecular lattice of 3 reveals the presence of dinuclear assemblies of Cu(II) ions bound to H4BDTMP(4-) and 1,10-phenanthroline in a square pyramidal environment, with the organophosphonate ligand serving as the connecting link to abutting dinuclear Cu(II) assemblies in a ternary polymeric system. The magnetic susceptibility data on 1, 2, and 3 suggest that compounds 1 and 3 exhibit a stronger antiferromagnetic behavior than 2, which is also confirmed from magnetization measurements. The physicochemical profiles of 1-3 (a) earmark the influence of the versatile H8BDTMP ligand as a metal ion binder on the chemical reactivity in binary and ternary systems of Cu(II) in aqueous and nonaqueous media and (b) denote the correlation of ligand hydrophilicity, aromaticity, denticity, charge, and H-bonding interactions with emerging defined Cu(II)-H8BDTMP structures of distinct lattice identity and spectroscopic-magnetic properties. Collectively, such structural and chemical factors formulate the interplay and contribution of binary and ternary interactions to lattice architecture and specified properties of new Cu(II)-organophosphonate materials with defined 2D-3D dimensionality.


Inorganic Chemistry | 2013

Heptanuclear antiferromagnetic Fe(III)-D-(-)-quinato assemblies with an S = 3/2 ground state-pH-specific synthetic chemistry, spectroscopic, structural, and magnetic susceptibility studies.

M. Menelaou; E. Vournari; Vassilis Psycharis; Catherine P. Raptopoulou; Aris Terzis; Vasilis Tangoulis; Y. Sanakis; C. Mateescu; Athanasios Salifoglou

Iron is an essential metal ion with numerous roles in biological systems and advanced abiotic materials. D-(-)-quinic acid is a cellular metal ion chelator, capable of promoting reactions with metal M(II,III) ions under pH-specific conditions. In an effort to comprehend the chemical reactivity of well-defined forms of Fe(III)/Fe(II) toward α-hydroxycarboxylic acids, pH-specific reactions of: (a) [Fe3O(CH3COO)6(H2O)3]·(NO3)·4H2O with D-(-)-quinic acid in a molar ratio 1:3 at pH 2.5 and (b) Mohrs salt with D-(-)-quinic acid in a molar ratio 1:3 at pH 7.5, respectively, led to the isolation of the first two heptanuclear Fe(III)-quinato complexes, [Fe7O3(OH)3(C7H10O6)6]·20.5H2O (1) and (NH4)[Fe7(OH)6(C7H10O6)6]·(SO4)2·18H2O (2). Compounds 1 and 2 were characterized by analytical, spectroscopic (UV-vis, FT-IR, EPR, and Mössbauer) techniques, CV, TGA-DTG, and magnetic susceptibility measurements. The X-ray structures of 1 and 2 reveal heptanuclear assemblies of six Fe(III) ions bound by six doubly deprotonated quinates and one Fe(III) ion bound by oxido- and hydroxido-bridges (1), and hydroxido-bridges (2), all in an octahedral fashion. Mössbauer spectroscopy on 1 and 2 suggests the presence of Fe(III) ions in an all-oxygen environment. EPR measurements indicate that 1 and 2 retain their structure in solution, while magnetic measurements reveal an overall antiferromagnetic behavior with a ground state S = 3/2. The collective physicochemical properties of 1 and 2 suggest that the (a) nature of the ligand, (b) precursor form of iron, (c) pH, and (d) molecular stoichiometry are key factors influencing the chemical reactivity of the binary Fe(II,III)-hydroxycarboxylato systems, their aqueous speciation, and ultimately through variably emerging hydrogen bonding interactions, the assembly of multinuclear Fe(III)-hydroxycarboxylato clusters with distinct lattice architectures of specific dimensionality (2D-3D) and magnetic signature.


Phosphorus Sulfur and Silicon and The Related Elements | 2007

Furannic Thiosemicarbazone Complexes of Co(II), Ni(II), and Cu(II) in Ethanol Solutions and of Co(II) in the Solid State

El Mostapha Jouad; Gilles Bouet; Mustayeen A. Khan; Diana Dogaru; C. Mateescu

Thiosemicarbazone complexes with cobalt(II), nickel(II), and copper(II) metal ions are studied in ethanol solutions. The stability constants of all the identified complexes are calculated, and we found that stability increases from cobalt to copper. The stability of the complex is increased by the presence of a donor group like methyl, whereas it is not affected by the length of the thiosemicarbazone side chain. A further study of the cobalt(II) complexes in the solid state permits the identification of the coordinating atoms. With the help of additional results from electronic spectra structures of the cobalt(II) complexes are proposed.

Collaboration


Dive into the C. Mateescu's collaboration.

Top Co-Authors

Avatar

Athanasios Salifoglou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aris Terzis

Nuclear Regulatory Commission

View shared research outputs
Top Co-Authors

Avatar

C. Gabriel

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

M. Menelaou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariana-Atena Poiana

University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

E. Halevas

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge