C. McCoey
University of Waterloo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. McCoey.
Astronomy and Astrophysics | 2012
Pieter Roelfsema; Frank Helmich; D. Teyssier; V. Ossenkopf; Patrick William Morris; Michael Olberg; R. Shipman; C. Risacher; M. Akyilmaz; R. Assendorp; I. M. Avruch; D. A. Beintema; N. Biver; A. C. A. Boogert; Colin Borys; J. Braine; M. Caris; E. Caux; J. Cernicharo; O. Coeur-Joly; C. Comito; G. de Lange; B. Delforge; P. Dieleman; L. Dubbeldam; Th. de Graauw; Kevin Edwards; Michel Fich; F. Flederus; C. Gal
Aims. In this paper the calibration and in-orbit performance of the Heterodyne Instrument for the Far-Infrared (HIFI) is described. Methods. The calibration of HIFI is based on a combination of ground and in-flight tests. Dedicated ground tests to determine those instrument parameters that can only be measured accurately using controlled laboratory stimuli were carried out in the instrument level test (ILT) campaign. Special in-flight tests during the commissioning phase (CoP) and performance verification (PV) allowed the determination of the remaining instrument parameters. The various instrument observing modes, as specified in astronomical observation templates (AOTs), were validated in parallel during PV by observing selected celestial sources. Results. The initial calibration and in-orbit performance of HIFI has been established. A first estimate of the calibration budget is given. The overall in-flight instrument performance agrees with the original specification. Issues remain at only a few frequencies.
Publications of the Astronomical Society of the Pacific | 2011
E. F. van Dishoeck; L. E. Kristensen; Arnold O. Benz; Edwin A. Bergin; P. Caselli; J. Cernicharo; Fabrice Herpin; M. R. Hogerheijde; D. Johnstone; R. Liseau; B. Nisini; R. Shipman; M. Tafalla; F. F. S. van der Tak; F. Wyrowski; Yuri Aikawa; R. Bachiller; Alain Baudry; M. Benedettini; P. Bjerkeli; Geoffrey A. Blake; Sylvain Bontemps; J. Braine; C. Brinch; S. Bruderer; L. Chavarria; C. Codella; F. Daniel; Th. de Graauw; E. Deul
Water In Star-forming regions with Herschel (WISH) is a key program on the Herschel Space Observatory designed to probe the physical and chemical structures of young stellar objects using water and related molecules and to follow the water abundance from collapsing clouds to planet-forming disks. About 80 sources are targeted, covering a wide ranee of luminosities-from low ( 10(5) L-circle dot)-and a wide range of evolutionary stages-from cold prestellar cores to warm protostellar envelopes and outflows to disks around young stars. Both the HIFI and PACS instruments are used to observe a variety of lines of H2O, (H2O)-O-18 and chemically related species at the source position and in small maps around the protostars and selected outflow positions. In addition, high-frequency lines of CO, (CO)-C-13, and (CO)-O-18 are obtained with Herschel and are complemented by ground-based observations of dust continuum, HDO, CO and its isotopologs, and other molecules to ensure a self-consistent data set for analysis. An overview of the scientific motivation and observational strategy of the program is given, together with the modeling approach and analysis tools that have been developed. Initial science results are presented. These include a lack of water in cold gas at abundances that are lower than most predictions, strong water emission from shocks in protostellar environments, the importance of UV radiation in heating the gas along outflow walls across the full range of luminosities, and surprisingly widespread detection of the chemically related hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of the energy budget indicate that H2O is generally not the dominant coolant in the warm dense gas associated with protostars. Very deep limits on the cold gaseous water reservoir in the outer regions of protoplanetary disks are obtained that have profound implications for our understanding of grain growth and mixing in disks.
Astronomy and Astrophysics | 2010
B. Nisini; M. Benedettini; C. Codella; T. Giannini; R. Liseau; David A. Neufeld; M. Tafalla; E. F. van Dishoeck; R. Bachiller; Alain Baudry; Arnold O. Benz; Edwin A. Bergin; P. Bjerkeli; Geoffrey A. Blake; Sylvain Bontemps; J. Braine; S. Bruderer; P. Caselli; J. Cernicharo; F. Daniel; P. Encrenaz; A. M. di Giorgio; C. Dominik; S. D. Doty; Michel Fich; A. Fuente; J. R. Goicoechea; Th. de Graauw; Frank Helmich; Gregory J. Herczeg
Context. The far-IR/sub-mm spectral mapping facility provided by the Herschel-PACS and HIFI instruments has made it possible to obtain, for the first time, images of H2O emission with a spatial resolution comparable to ground based mm/sub-mm observations. Aims. In the framework of the Water In Star-forming regions with Herschel (WISH) key program, maps in water lines of several outflows from young stars are being obtained, to study the water production in shocks and its role in the outflow cooling. This paper reports the first results of this program, presenting a PACS map of the o-H2O 179 mu m transition obtained toward the young outflow L1157. Methods. The 179 mu m map is compared with those of other important shock tracers, and with previous single-pointing ISO, SWAS, and Odin water observations of the same source that allow us to constrain the H2O abundance and total cooling. Results. Strong H2O peaks are localized on both shocked emission knots and the central source position. The H2O 179 mu m emission is spatially correlated with emission from H-2 rotational lines, excited in shocks leading to a significant enhancement of the water abundance. Water emission peaks along the outflow also correlate with peaks of other shock-produced molecular species, such as SiO and NH3. A strong H2O peak is also observed at the location of the proto-star, where none of the other molecules have significant emission. The absolute 179 mu m intensity and its intensity ratio to the H2O 557 GHz line previously observed with Odin/SWAS indicate that the water emission originates in warm compact clumps, spatially unresolved by PACS, having a H2O abundance of the order of 10(-4). This testifies that the clumps have been heated for a time long enough to allow the conversion of almost all the available gas-phase oxygen into water. The total H2O cooling is similar to 10(-1) L-circle dot, about 40% of the cooling due to H-2 and 23% of the total energy released in shocks along the L1157 outflow.
Astronomy and Astrophysics | 2010
Arnold O. Benz; S. Bruderer; E. F. van Dishoeck; P. Stäuber; S. F. Wampfler; M. Melchior; C. Dedes; F. Wyrowski; S. D. Doty; F. F. S. van der Tak; W. Bächtold; Andre Csillaghy; A. Megej; C. Monstein; M. Soldati; R. Bachiller; Alain Baudry; M. Benedettini; Edwin A. Bergin; P. Bjerkeli; Geoffrey A. Blake; Sylvain Bontemps; J. Braine; P. Caselli; J. Cernicharo; C. Codella; F. Daniel; A. M. di Giorgio; P. Dieleman; C. Dominik
Context. Hydrides of the most abundant heavier elements are fundamental molecules in cosmic chemistry. Some of them trace gas irradiated by UV or X-rays. Aims. We explore the abundances of major hydrides in W3 IRS5, a prototypical region of high-mass star formation. Methods. W3 IRS5 was observed by HIFI on the Herschel Space Observatory with deep integration (� 2500 s) in 8 spectral regions. Results. The target lines including CH, NH, H3O + , and the new molecules SH + ,H 2O + ,a nd OH + are detected. The H2O + and OH + J = 1−0 lines are found mostly in absorption, but also appear to exhibit weak emission (P-Cyg-like). Emission requires high density, thus originates most likely near the protostar. This is corroborated by the absence of line shifts relative to the young stellar object (YSO). In addition, H2O + and OH + also contain strong absorption components at a velocity shifted relative to W3 IRS5, which are attributed to foreground clouds. Conclusions. The molecular column densities derived from observations correlate well with the predictions of a model that assumes the main emission region is in outflow walls, heated and irradiated by protostellar UV radiation.
Astronomy and Astrophysics | 2010
U. A. Yıldız; E. F. van Dishoeck; L. E. Kristensen; R. Visser; Jes K. Jørgensen; Gregory J. Herczeg; T. A. van Kempen; M. R. Hogerheijde; S. D. Doty; Arnold O. Benz; S. Bruderer; S. F. Wampfler; E. Deul; R. Bachiller; Alain Baudry; M. Benedettini; Edwin A. Bergin; P. Bjerkeli; Geoffrey A. Blake; Sylvain Bontemps; J. Braine; P. Caselli; J. Cernicharo; C. Codella; F. Daniel; A. M. di Giorgio; C. Dominik; P. Encrenaz; Michel Fich; A. Fuente
Herschel-HIFI observations of high-J lines (up to J_u=10) of 12CO, 13CO and C18O are presented toward three deeply embedded low-mass protostars, NGC 1333 IRAS 2A, IRAS 4A, and IRAS 4B, obtained as part of the Water In Star-forming regions with Herschel (WISH) key program. The spectrally-resolved HIFI data are complemented by ground-based observations of lower-J CO and isotopologue lines. The 12CO 10-9 profiles are dominated by broad (FWHM 25-30 km s^-1) emission. Radiative transfer models are used to constrain the temperature of this shocked gas to 100-200 K. Several CO and 13CO line profiles also reveal a medium-broad component (FWHM 5-10 km s^-1), seen prominently in H2O lines. Column densities for both components are presented, providing a reference for determining abundances of other molecules in the same gas. The narrow C18O 9-8 lines probe the warmer part of the quiescent envelope. Their intensities require a jump in the CO abundance at an evaporation temperature around 25 K, thus providing new direct evidence for a CO ice evaporation zone around low-mass protostars.
Astronomy and Astrophysics | 2010
L. Chavarria; Fabrice Herpin; T. Jacq; J. Braine; Sylvain Bontemps; Alain Baudry; M. Marseille; van der Floris Tak; B. Pietropaoli; F. Wyrowski; Russel Shipman; W. Frieswijk; E. F. van Dishoeck; J. Cernicharo; R. Bachiller; M. Benedettini; Arnold O. Benz; Edwin A. Bergin; P. Bjerkeli; Geoffrey A. Blake; S. Bruderer; P. Caselli; C. Codella; F. Daniel; A. M. di Giorgio; C. Dominik; S. D. Doty; P. Encrenaz; Michel Fich; A. Fuente
We present Herschel observations of the water molecule in the massive star-forming region W3 IRS5. The o-H17O 110-101, p-H18O 111-000, p-H2O 22 202-111, p-H2O 111-000, o-H2O 221-212, and o-H2O 212-101 lines, covering a frequency range from 552 up to 1669 GHz, have been detected at high spectral resolution with HIFI. The water lines in W3 IRS5 show well-defined high-velocity wings that indicate a clear contribution by outflows. Moreover, the systematically blue-shifted absorption in the H2O lines suggests expansion, presumably driven by the outflow. No infall signatures are detected. The p-H2O 111-000 and o-H2O 212-101 lines show absorption from the cold material (T ~ 10 K) in which the high-mass protostellar envelope is embedded. One-dimensional radiative transfer models are used to estimate water abundances and to further study the kinematics of the region. We show that the emission in the rare isotopologues comes directly from the inner parts of the envelope (T > 100 K) where water ices in the dust mantles evaporate and the gas-phase abundance increases. The resulting jump in the water abundance (with a constant inner abundance of 10^{-4}) is needed to reproduce the o-H17O 110-101 and p-H18O 111-000 spectra in our models. We estimate water abundances of 10^{-8} to 10^{-9} in the outer parts of the envelope (T < 100 K). The possibility of two protostellar objects contributing to the emission is discussed.
Astronomy and Astrophysics | 2010
S. Bruderer; Arnold O. Benz; E. F. van Dishoeck; M. Melchior; S. D. Doty; F. F. S. van der Tak; P. Stäuber; S. F. Wampfler; C. Dedes; U. A. Yıldız; L. Pagani; T. Giannini; Th. de Graauw; N. Whyborn; D. Teyssier; Willem Jellema; R. Shipman; R. Schieder; N. Honingh; E. Caux; W. Bächtold; A. Csillaghy; C. Monstein; R. Bachiller; Alain Baudry; M. Benedettini; Edwin A. Bergin; P. Bjerkeli; Geoffrey A. Blake; Sylvain Bontemps
The Heterodyne Instrument for the Far Infrared (HIFI) onboard the Herschel Space Observatory allows the first observations of light diatomic molecules at high spectral resolution and in multiple transitions. Here, we report deep integrations using HIFI in different lines of hydrides towards the high-mass star forming region AFGL 2591. Detected are CH, CH + , NH, OH + ,H 2O + , while NH + and SH + have not been detected. All molecules except for CH and CH + are seen in absorption with low excitation temperatures and at velocities different from the systemic velocity of the protostellar envelope. Surprisingly, the CH(JF,P = 3/22,− − 1/21,+ )a nd CH + (J = 1−0, J = 2−1) lines are detected in emission at the systemic velocity. We can assign the absorption features to a foreground cloud and an outflow lobe, while the CH and CH + emission stems from the envelope. The observed abundance and excitation of CH and CH + can be explained in the scenario of FUV irradiated outflow walls, where a cavity etched out by the outflow allows protostellar FUV photons to irradiate and heat the envelope at larger distances driving the chemical reactions that produce these molecules.
Astronomy and Astrophysics | 2006
T. Giannini; C. McCoey; B. Nisini; S. Cabrit; A. Caratti o Garatti; L. Calzoletti; D. R. Flower
Aims. We present a detailed study of the infrared line emission (1–200 µm) in the Herbig-Haro object HH54. Our database comprises: high- (R ∼ 9000) and low- (R ∼ 600) resolution spectroscopic data in the near-infrared band (1–2.5 µm); mid-infrared spectrophotometric images (5–12 µm); and, far-IR (45–200 µm, R ∼ 200) spectra acquired with the ISO satellite. As a result, we provide the detection of and the absolute fluxes for more than 60 molecular features (mainly from H2 in the near- and mid-infrared and from H2O, CO and OH in the far-infrared) and 23 ionic lines. Methods. The H2 lines, coming from levels from v = 0t ov = 4 have been interpreted in the context of a state-of-the-art shock code, whose output parameters are adopted as input to a Large Velocity Gradient computation in order to interpret the FIR emission of CO, H2O and OH. Results. The H2 emission can be interpreted as originating in either steady-state J-type shocks or in quasi-steady J-type shocks with magnetic precursor. However, our multi-species analysis shows that only a model of a J-type shock with magnetic precursor (vshock = 18 km s −1 , nH = 10 4 cm −3 , B = 100 µG, age = 400 yr) can account for both the observed H2 emission and the CO and H2O lines. Such a model predicts a H2O abundance of ∼7 × 10 −5 , in agreement with estimations from other shock models of outflows associated with low mass protostars. We can exclude the possibility that the observed atomic lines arise in the same shock as the molecular lines, and give arguments in favour of the presence of a further high-velocity, fully dissociative shock component in the region. Finally, in view of the forthcoming spectroscopic facilities on board of the Herschel satellite, we provide predictions for H2O lines considered to be the most suitable for diagnostic purposes.
Astronomy and Astrophysics | 2013
S. F. Wampfler; S. Bruderer; A. Karska; G. J. Herczeg; E. F. van Dishoeck; L. E. Kristensen; J. R. Goicoechea; Arnold O. Benz; S. D. Doty; C. McCoey; Alain Baudry; T. Giannini; B. Larsson
Context. The OH radical is a key species in the water chemistry network of star-forming regions, because its presence is tightly related to the formation and destruction of water. Previous studies of the OH far-infrared emission from low- and intermediate-mass protostars suggest that the OH emission mainly originates from shocked gas and not from the quiescent protostellar envelopes. Aims. We aim to study the excitation of OH in embedded low- and intermediate-mass protostars, determine the influence of source parameters on the strength of the emission, investigate the spatial extent of the OH emission, and further constrain its origin. Methods. This paper presents OH observations from 23 low- and intermediate-mass young stellar objects obtained with the PACS integral field spectrometer on-board Herschel in the context of the “Water In Star-forming regions with Herschel” (WISH) key program. Radiative transfer codes are used to model the OH excitation. Results. Most low-mass sources have compact OH emission (5000 AU scale), whereas the OH lines in most intermediate-mass sources are extended over the whole 47. �� 0 × 47. �� 0 PACS detector field-of-view (20000 AU). The strength of the OH emission is correlated with various source properties such as the bolometric luminosity and the envelope mass, but also with the [OI] and H2O emission. Rotational diagrams for sources with many OH lines show that the level populations of OH can be approximated by a Boltzmann distribution with an excitation temperature at around 70 K. Radiative transfer models of spherically symmetric envelopes cannot reproduce the OH emission fluxes nor their broad line widths, strongly suggesting an outflow origin. Slab excitation models indicate that the observed excitation temperature can either be reached if the OH molecules are exposed to a strong far-infrared continuum radiation field or if the gas temperature and density are sufficiently high. Using realistic source parameters and radiation fields, it is shown for the case of Ser SMM1 that radiative pumping plays an important role in transitions arising from upper level energies higher than 300 K. The compact emission in the low-mass sources and the required presence of a strong radiation field and/or a high density to excite the OH molecules points toward an origin in shocks in the inner envelope close to the protostar.
Astronomy and Astrophysics | 2013
A. Coutens; C. Vastel; S. Cabrit; C. Codella; L. E. Kristensen; C. Ceccarelli; E. F. van Dishoeck; A. C. A. Boogert; Sandrine Bottinelli; A. Castets; E. Caux; C. Comito; K. Demyk; Fabrice Herpin; B. Lefloch; C. McCoey; J. C. Mottram; B. Parise; Vianney Taquet; F. F. S. van der Tak; R. Visser; U. A. Yıldız
Aims. The aim of this paper is to study deuterated water in the solar-type protostars NGC1333 IRAS4A and IRAS4B, compare their HDO abundance distribution with other star-forming regions and constrain their HDO/H2O ratios. Methods. Using the Herschel/HIFI instrument as well as ground-based telescopes, we observed several HDO lines covering a large excitation range (Eup/k=22-168 K) towards these protostars and an outflow position. Non-LTE radiative transfer codes were then used to determine the HDO abundance profiles in these sources. Results. The HDO fundamental line profiles show a very broad component, tracing the molecular outflows, in addition to a narrower emission component as well as a narrow absorbing component. In the protostellar envelope of NGC1333 IRAS4A, the HDO inner (T>100 K) and outer (T<100 K) abundances with respect to H2 are estimated at 7.5x10^{-9} and 1.2x10^{-11} respectively, whereas, in NGC1333 IRAS4B, they are 1.0x10^{-8} and 1.2x10^{-10} respectively. Similarly to the low-mass protostar IRAS16293-2422, an absorbing outer layer with an enhanced abundance of deuterated water is required to reproduce the absorbing components seen in the fundamental lines at 465 and 894 GHz in both sources. This water-rich layer is probably extended enough to encompass the two sources as well as parts of the outflows. In the outflows emanating from NGC1333 IRAS4A, the HDO column density is estimated at about (2-4)x10^{13} cm^{-2}, leading to an abundance of about (0.7-1.9)x10^{-9}. An HDO/H2O ratio between 7x10^{-4} and 9x10^{-2} is derived in the outflows. In the warm inner regions of these two sources, we estimate the HDO/H2O ratios at about 1x10^{-4}-4x10^{-3}. This ratio seems higher (a few %) in the cold envelope of IRAS4A, whose possible origin is discussed in relation to formation processes of HDO and H2O.