Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Michel Zwaan is active.

Publication


Featured researches published by C. Michel Zwaan.


Blood | 2008

Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome–positive leukemia

Kimmo Porkka; Perttu Koskenvesa; Tuija Lundán; Johanna Rimpiläinen; Satu Mustjoki; Richard Smykla; Robert Wild; Roger Luo; Montserrat Arnan; Benoît Brethon; Lydia Eccersley; Henrik Hjorth-Hansen; Martin Höglund; Hana Klamová; Håvar Knutsen; Suhag Parikh; Emmanuel Raffoux; Franz X. Gruber; Finella Brito-Babapulle; Hervé Dombret; Rafael F. Duarte; Erkki Elonen; Ron Paquette; C. Michel Zwaan; Francis Y. Lee

Although imatinib, a BCR-ABL tyrosine kinase inhibitor, is used to treat acute Philadelphia chromosome-positive (Ph(+)) leukemia, it does not prevent central nervous system (CNS) relapses resulting from poor drug penetration through the blood-brain barrier. Imatinib and dasa-tinib (a dual-specific SRC/BCR-ABL kinase inhibitor) were compared in a preclinical mouse model of intracranial Ph(+) leukemia. Clinical dasatinib treatment in patients with CNS Ph(+) leukemia was assessed. In preclinical studies, dasatinib increased survival, whereas imatinib failed to inhibit intracranial tumor growth. Stabilization and regression of CNS disease were achieved with continued dasa-tinib administration. The drug also demonstrated substantial activity in 11 adult and pediatric patients with CNS Ph(+) leukemia. Eleven evaluable patients had clinically significant, long-lasting responses, which were complete in 7 patients. In 3 additional patients, isolated CNS relapse occurred during dasatinib therapy; and in 2 of them, it was caused by expansion of a BCR-ABL-mutated dasatinib-resistant clone, implying selection pressure exerted by the compound in the CNS. Dasatinib has promising therapeutic potential in managing intracranial leukemic disease and substantial clinical activity in patients who experience CNS relapse while on imatinib therapy. This study is registered at ClinicalTrials.gov as CA180006 (#NCT00108719) and CA180015 (#NCT00110097).


Blood | 2009

Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study

Brian V. Balgobind; Susana C. Raimondi; Jochen Harbott; Martin Zimmermann; Todd A. Alonzo; Anne Auvrignon; H. Berna Beverloo; Myron Chang; Ursula Creutzig; Michael Dworzak; Erik Forestier; Brenda Gibson; Henrik Hasle; Christine J. Harrison; Nyla A. Heerema; Gertjan J. L. Kaspers; Anna Leszl; Nathalia Litvinko; Luca Lo Nigro; Akira Morimoto; Christine Perot; Rob Pieters; Dirk Reinhardt; Jeffrey E. Rubnitz; Franklin O. Smith; Jan Stary; Irina Stasevich; Sabine Strehl; Takashi Taga; Daisuke Tomizawa

Translocations involving chromosome 11q23 frequently occur in pediatric acute myeloid leukemia (AML) and are associated with poor prognosis. In most cases, the MLL gene is involved, and more than 50 translocation partners have been described. Clinical outcome data of the 11q23-rearranged subgroups are scarce because most 11q23 series are too small for meaningful analysis of subgroups, although some studies suggest that patients with t(9;11)(p22;q23) have a more favorable prognosis. We retrospectively collected outcome data of 756 children with 11q23- or MLL-rearranged AML from 11 collaborative groups to identify differences in outcome based on translocation partners. All karyotypes were centrally reviewed before assigning patients to subgroups. The event-free survival of 11q23/MLL-rearranged pediatric AML at 5 years from diagnosis was 44% (+/- 5%), with large differences across subgroups (11% +/- 5% to 92% +/- 5%). Multivariate analysis identified the following subgroups as independent prognostic predictors: t(1;11)(q21;q23) (hazard ratio [HR] = 0.1, P = .004); t(6;11)(q27;q23) (HR = 2.2, P < .001); t(10;11)(p12;q23) (HR = 1.5, P = .005); and t(10;11)(p11.2;q23) (HR = 2.5, P = .005). We could not confirm the favorable prognosis of the t(9;11)(p22;q23) subgroup. We identified large differences in outcome within 11q23/MLL-rearranged pediatric AML and novel subgroups based on translocation partners that independently predict clinical outcome. Screening for these translocation partners is needed for accurate treatment stratification at diagnosis.


Blood | 2011

NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern

Iris H.I.M. Hollink; Marry M. van den Heuvel-Eibrink; Susan T.C.J.M. Arentsen-Peters; Marta Pratcorona; Saman Abbas; Jenny E. Kuipers; Janneke van Galen; H. Berna Beverloo; Edwin Sonneveld; Gertjan J. L. Kaspers; Jan Trka; André Baruchel; Martin Zimmermann; Ursula Creutzig; Dirk Reinhardt; Rob Pieters; C. Michel Zwaan

Translocations involving nucleoporin 98kD (NUP98) on chromosome 11p15 occur at relatively low frequency in acute myeloid leukemia (AML) but can be missed with routine karyotyping. In this study, high-resolution genome-wide copy number analyses revealed cryptic NUP98/NSD1 translocations in 3 of 92 cytogenetically normal (CN)-AML cases. To determine their exact frequency, we screened > 1000 well-characterized pediatric and adult AML cases using a NUP98/NSD1-specific RT-PCR. Twenty-three cases harbored the NUP98/NSD1 fusion, representing 16.1% of pediatric and 2.3% of adult CN-AML patients. NUP98/NSD1-positive AML cases had significantly higher white blood cell counts (median, 147 × 10⁹/L), more frequent FAB-M4/M5 morphology (in 63%), and more CN-AML (in 78%), FLT3/internal tandem duplication (in 91%) and WT1 mutations (in 45%) than NUP98/NSD1-negative cases. NUP98/NSD1 was mutually exclusive with all recurrent type-II aberrations. Importantly, NUP98/NSD1 was an independent predictor for poor prognosis; 4-year event-free survival was < 10% for both pediatric and adult NUP98/NSD1-positive AML patients. NUP98/NSD1-positive AML showed a characteristic HOX-gene expression pattern, distinct from, for example, MLL-rearranged AML, and the fusion protein was aberrantly localized in nuclear aggregates, providing insight into the leukemogenic pathways of these AMLs. Taken together, NUP98/NSD1 identifies a previously unrecognized group of young AML patients, with distinct characteristics and dismal prognosis, for whom new treatment strategies are urgently needed.


Blood | 2008

Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis

Brian V. Balgobind; Pieter Van Vlierberghe; Ans van den Ouweland; H. Berna Beverloo; Joan N.R. Terlouw-Kromosoeto; Elisabeth R. van Wering; Dirk Reinhardt; Martin A. Horstmann; Gertjan J. L. Kaspers; Rob Pieters; C. Michel Zwaan; Marry M. van den Heuvel-Eibrink; Jules P.P. Meijerink

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder caused by mutations in the NF1 gene. Patients with NF1 have a higher risk to develop juvenile myelomonocytic leukemia (JMML) with a possible progression toward acute myeloid leukemia (AML). In an oligo array comparative genomic hybridization-based screening of 103 patients with pediatric T-cell acute lymphoblastic leukemia (T-ALL) and 71 patients with MLL-rearranged AML, a recurrent cryptic deletion, del(17)(q11.2), was identified in 3 patients with T-ALL and 2 patients with MLL-rearranged AML. This deletion has previously been described as a microdeletion of the NF1 region in patients with NF1. However, our patients lacked clinical NF1 symptoms. Mutation analysis in 4 of these del(17)(q11.2)-positive patients revealed that mutations in the remaining NF1 allele were present in 3 patients, confirming its role as a tumor-suppressor gene in cancer. In addition, NF1 inactivation was confirmed at the RNA expression level in 3 patients tested. Since the NF1 protein is a negative regulator of the RAS pathway (RAS-GTPase activating protein), homozygous NF1 inactivation represent a novel type I mutation in pediatric MLL-rearranged AML and T-ALL with a predicted frequency that is less than 10%. NF1 inactivation may provide an additional proliferative signal toward the development of leukemia.


Blood | 2009

Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia

Iris H.I.M. Hollink; Marry M. van den Heuvel-Eibrink; Martin Zimmermann; Brian V. Balgobind; Susan T.C.J.M. Arentsen-Peters; Marielle Alders; Andre Willasch; Gertjan J. L. Kaspers; Jan Trka; André Baruchel; Siebold S.N. de Graaf; Ursula Creutzig; Rob Pieters; Dirk Reinhardt; C. Michel Zwaan

Wilms tumor 1 (WT1) mutations have recently been identified in approximately 10% of adult acute myeloid leukemia (AML) with normal cytogenetics (CN-AML) and are associated with poor outcome. Using array-based comparative genome hybridization in pediatric CN-AML samples, we detected a WT1 deletion in one sample. The other WT1 allele was mutated. This prompted us to further investigate the role of WT1 aberrations in childhood AML. Mutations were found in 35 of 298 (12%) diagnostic pediatric AML samples. In 19 of 35 (54%) samples, more than one WT1 aberration was found: 15 samples had 2 different mutations, 2 had a homozygous mutation, and 2 had a mutation plus a WT1 deletion. WT1 mutations clustered significantly in the CN-AML subgroup (22%; P < .001) and were associated with FLT3/ITD (43 vs 17%; P < .001). WT1 mutations conferred an independent poor prognostic significance (WT1 mutated vs wild-type patients: 5-year probability of overall survival [pOS] 35% vs 66%, P = .002; probability of event-free survival 22% vs 46%, P < .001; and cumulative incidence of relapse or regression 70% vs 44%, P < .001). Patients with both a WT1 mutation and a FLT3/ITD had a dismal prognosis (5-year pOS 21%). WT1 mutations occur at a significant rate in childhood AML and are a novel independent poor prognostic marker.


Haematologica | 2011

Integrative analysis of type-I and type-II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia

Brian V. Balgobind; Iris H.I.M. Hollink; Susan T.C.J.M. Arentsen-Peters; Martin Zimmermann; Jochen Harbott; H. Berna Beverloo; Anne R. M. von Bergh; Jacqueline Cloos; Gertjan J. L. Kaspers; Valerie de Haas; Zuzana Zemanova; Jan Stary; Jean-Michel Cayuela; André Baruchel; Ursula Creutzig; Dirk Reinhardt; Rob Pieters; C. Michel Zwaan; Marry M. van den Heuvel-Eibrink

Background Several studies of pediatric acute myeloid leukemia have described the various type-I or type-II aberrations and their relationship with clinical outcome. However, there has been no recent comprehensive overview of these genetic aberrations in one large pediatric acute myeloid leukemia cohort. Design and Methods We studied the different genetic aberrations, their associations and their impact on prognosis in a large pediatric acute myeloid leukemia series (n=506). Karyotypes were studied, and hotspot regions of NPM1, CEPBA, MLL, WT1, FLT3, N-RAS, K-RAS, PTPN11 and KIT were screened for mutations of available samples. The mutational status of all type-I and type-II aberrations was available in 330 and 263 cases, respectively. Survival analysis was performed in a subset (n=385) treated on consecutive acute myeloid leukemia Berlin-Frankfurt-Munster Study Group and Dutch Childhood Oncology Group treatment protocols. Results Genetic aberrations were associated with specific clinical characteristics, e.g. significantly higher diagnostic white blood cell counts in MLL-rearranged, WT1-mutated and FLT3-ITD-positive acute myeloid leukemia. Furthermore, there was a significant difference in the distribution of these aberrations between children below and above the age of two years. Non-random associations, e.g. KIT mutations with core-binding factor acute myeloid leukemia, and FLT3-ITD with t(15;17)(q22;q21), NPM1- and WT1-mutated acute myeloid leukemia, respectively, were observed. Multivariate analysis revealed a ‘favorable karyotype’, i.e. t(15;17)(q22;q21), t(8;21)(q22;q22) and inv(16)(p13q22)/t(16;16)(p13;q22). NPM1 and CEBPA double mutations were independent factors for favorable event-free survival. WT1 mutations combined with FLT3-ITD showed the worst outcome for 5-year overall survival (22±14%) and 5-year event-free survival (20±13%), although it was not an independent factor in multivariate analysis. Conclusions Integrative analysis of type-I and type-II aberrations provides an insight into the frequencies, non-random associations and prognostic impact of the various aberrations, reflecting the heterogeneity of pediatric acute myeloid leukemia. These aberrations are likely to guide the stratification of pediatric acute myeloid leukemia and may direct the development of targeted therapies.


Blood | 2014

Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group

Trudy Buitenkamp; Shai Izraeli; Martin Zimmermann; Erik Forestier; Nyla A. Heerema; Marry M. van den Heuvel-Eibrink; Rob Pieters; Carin M. Korbijn; Lewis B. Silverman; Kjeld Schmiegelow; Der-Cheng Liang; Keizo Horibe; Maurizio Aricò; Andrea Biondi; Giuseppe Basso; Karin R. Rabin; Martin Schrappe; Gunnar Cario; Georg Mann; Maria Morak; Renate Panzer-Grümayer; Veerle Mondelaers; Tim Lammens; Hélène Cavé; Batia Stark; Ithamar Ganmore; Anthony V. Moorman; Ajay Vora; Stephen P. Hunger; Ching-Hon Pui

Children with Down syndrome (DS) have an increased risk of B-cell precursor (BCP) acute lymphoblastic leukemia (ALL). The prognostic factors and outcome of DS-ALL patients treated in contemporary protocols are uncertain. We studied 653 DS-ALL patients enrolled in 16 international trials from 1995 to 2004. Non-DS BCP-ALL patients from the Dutch Child Oncology Group and Berlin-Frankfurt-Münster were reference cohorts. DS-ALL patients had a higher 8-year cumulative incidence of relapse (26% ± 2% vs 15% ± 1%, P < .001) and 2-year treatment-related mortality (TRM) (7% ± 1% vs 2.0% ± <1%, P < .0001) than non-DS patients, resulting in lower 8-year event-free survival (EFS) (64% ± 2% vs 81% ± 2%, P < .0001) and overall survival (74% ± 2% vs 89% ± 1%, P < .0001). Independent favorable prognostic factors include age <6 years (hazard ratio [HR] = 0.58, P = .002), white blood cell (WBC) count <10 × 10(9)/L (HR = 0.60, P = .005), and ETV6-RUNX1 (HR = 0.14, P = .006) for EFS and age (HR = 0.48, P < .001), ETV6-RUNX1 (HR = 0.1, P = .016) and high hyperdiploidy (HeH) (HR = 0.29, P = .04) for relapse-free survival. TRM was the major cause of death in ETV6-RUNX1 and HeH DS-ALLs. Thus, while relapse is the main contributor to poorer survival in DS-ALL, infection-associated TRM was increased in all protocol elements, unrelated to treatment phase or regimen. Future strategies to improve outcome in DS-ALL should include improved supportive care throughout therapy and reduction of therapy in newly identified good-prognosis subgroups.


Journal of Clinical Oncology | 2015

Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia

C. Michel Zwaan; Edward A. Kolb; Dirk Reinhardt; Jonas Abrahamsson; Souichi Adachi; Richard Aplenc; Eveline S. J. M. de Bont; Barbara De Moerloose; Michael Dworzak; Brenda Gibson; Henrik Hasle; Guy Leverger; Franco Locatelli; Christine Ragu; Raul C. Ribeiro; Carmelo Rizzari; Jeffrey E. Rubnitz; Owen P. Smith; Lillian Sung; Daisuke Tomizawa; Marry M. van den Heuvel-Eibrink; Ursula Creutzig; Gertjan J. L. Kaspers

Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML--supportive care--and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects.


Leukemia | 2013

NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern

J D De Rooij; Iris H.I.M. Hollink; Susan T.C.J.M. Arentsen-Peters; J F van Galen; H. Berna Beverloo; André Baruchel; Jan Trka; Dirk Reinhardt; Edwin Sonneveld; Martin Zimmermann; Todd A. Alonzo; Rob Pieters; Soheil Meshinchi; M.M. van den Heuvel-Eibrink; C. Michel Zwaan

Cytogenetic abnormalities and early response to treatment are the main prognostic factors in acute myeloid leukemia (AML). Recently, NUP98/NSD1 (t(5; 11)(q35; p15)), a cytogenetically cryptic fusion, was described as recurrent event in AML, characterized by dismal prognosis and HOXA/B gene overexpression. Using split-signal fluorescence in situ hybridization, other NUP98-rearranged pediatric AML cases were identified, including several acute megakaryoblastic leukemia (AMKL) cases with a cytogenetically cryptic fusion of NUP98 to JARID1A (t(11;15)(p15;q35)). In this study we screened 105 pediatric AMKL cases to analyze the frequency of NUP98/JARID1A and other recurrent genetic abnormalities. NUP98/JARID1A was identified in 11/105 patients (10.5%). Other abnormalities consisted of RBM15/MKL1 (n=16), CBFA2T3/GLIS2 (n=13) and MLL-rearrangements (n=13). Comparing NUP98/JARID1A-positive patients with other pediatric AMKL patients, no significant differences in sex, age and white blood cell count were found. NUP98/JARID1A was not an independent prognostic factor for 5-year overall (probability of overall survival (pOS)) or event-free survival (probability of event-free survival (pEFS)), although the 5-year pOS for the entire AMKL cohort was poor (42±6%). Cases with RBM15/MLK1 fared significantly better in terms of pOS and pEFS, although this was not independent from other risk factors in multivariate analysis. NUP98/JARID1A cases were characterized by HOXA/B gene overexpression, which is a potential druggable pathway. In conclusion, NUP98/JARID1A is a novel recurrent genetic abnormality in pediatric AMKL.


Haematologica | 2011

Evaluation of gene expression signatures predictive of cytogenetic and molecular subtypes of pediatric acute myeloid leukemia

Brian V. Balgobind; Marry M. van den Heuvel-Eibrink; Renee X. De Menezes; Dirk Reinhardt; Iris H.I.M. Hollink; Susan T. J. C. M. Arentsen-Peters; Elisabeth R. van Wering; Gertjan J. L. Kaspers; Jacqueline Cloos; Evelien S.J.M. de Bont; Jean-Michel Cayuela; André Baruchel; Claus Meyer; Rolf Marschalek; Jan Trka; Jan Stary; H. Berna Beverloo; Rob Pieters; C. Michel Zwaan; Monique L. den Boer

Background Pediatric acute myeloid leukemia is a heterogeneous disease characterized by non-random genetic aberrations related to outcome. The genetic subtype is currently detected by different diagnostic procedures which differ in success rate and/or specificity. Design and Methods We examined the potential of gene expression profiles to classify pediatric acute myeloid leukemia. Gene expression microarray data of 237 children with acute myeloid leukemia were collected and a double-loop cross validation approach was used to generate a subtype-predictive gene expression profile in the discovery cohort (n=157) which was then tested for its true predictive value in the independent validation cohort (n=80). The classifier consisted of 75 probe sets, representing the top 15 discriminating probe sets for MLL-rearranged, t(8;21)(q22;q22), inv(16)(p13q22), t(15;17)(q21;q22) and t(7;12)(q36;p13)-positive acute myeloid leukemia. Results These cytogenetic subtypes represent approximately 40% of cases of pediatric acute myeloid leukemia and were predicted with 92% and 99% accuracy in the discovery and independent validation cohort, respectively. However, for NPM1, CEBPA, MLL(-PTD), FLT3(-ITD), KIT, PTPN11 and N/K-RAS gene expression signatures had limited predictive value. This may be caused by a limited frequency of these mutations and by underlying cytogenetics. This latter is exemplified by the fact that different gene expression signatures were discovered for FLT3-ITD in patients with normal cytogenetics and in those with t(15;17)(q21;q22)-positive acute myeloid leukemia, which pointed to HOXB-upregulation being specific for FLT3-ITD+ cytogenetically normal acute myeloid leukemia. Conclusions In conclusion, gene expression profiling correctly predicted the most prevalent cytogenetic subtypes of pediatric acute myeloid leukemia with high accuracy. In clinical practice, this gene expression signature may replace multiple diagnostic tests for approximately 40% of pediatric acute myeloid leukemia cases whereas only for the remaining cases (predicted as ‘acute myeloid leukemia-other’) are additional tests indicated. Moreover, the discriminative genes reveal new insights into the biology of acute myeloid leukemia subtypes that warrants follow-up as potential targets for new therapies.

Collaboration


Dive into the C. Michel Zwaan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob Pieters

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valerie de Haas

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Stary

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Ursula Creutzig

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Eveline S. J. M. de Bont

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

H. Berna Beverloo

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge