C. Millan
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Millan.
Nature | 2009
Tim R. Naish; Ross D. Powell; R. H. Levy; Gary S. Wilson; Reed P. Scherer; Franco Maria Talarico; Lawrence A. Krissek; Frank Niessen; M. Pompilio; T. J. Wilson; Lionel Carter; Robert M. DeConto; Peter John Huybers; Robert McKay; David Pollard; J. Ross; D. M. Winter; P. J. Barrett; G. H. Browne; Rosemary Cody; Ellen A. Cowan; James S. Crampton; Gavin B. Dunbar; Nelia W. Dunbar; Fabio Florindo; Catalina Gebhardt; Ian J. Graham; M. Hannah; Dhiresh Hansaraj; David M. Harwood
Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth’s orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the ‘warmer-than-present’ early-Pliocene epoch (∼5–3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, ∼40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth’s axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to ∼3 °C warmer than today and atmospheric CO2 concentration was as high as ∼400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO2.
Geosphere | 2014
Timothy S. Paulsen; T. J. Wilson; Christine Demosthenous; C. Millan; Rich Jarrard; Andreas Läufer
We report new strain analyses of mechanically twinned calcite in veins hosted by Neogene (13.6–4.3 Ma) sedimentary and volcanic rocks recovered from the Terror Rift system in the southern Ross Sea, Antarctica, by the ANDRILL (ANtarctic geological DRILLing) McMurdo Ice Shelf (MIS) Project. Strain analyses of the ANDRILL MIS AND-1B drill core samples yield prolate and oblate ellipsoids with principal shortening and extension strains ranging from −7% to 9%, respectively. The majority of samples show ≤25% negative expected values, indicating homogeneous coaxial strain characterized predominantly by subvertical shortening. We attribute the subvertical shortening strains to mechanical twinning at relatively shallow depths in an Andersonian normal faulting stress regime induced by sedimentary and ice sheet loading of the stratigraphic sequence and characterized by low stress magnitudes. Oriented samples yield a northwest-southeast average extension direction that is subparallel to other indicators of Neogene extension. This northwest-southeast extension is consistent with strain predicted by Neogene orthogonal rifting in a north-northeast–trending rift segment, as well as models of right-lateral transtensional rifting. The overall paucity of a noncoaxial layer-parallel shortening signal in the AND-1B twin populations favors orthogonal extension in the Neogene Terror Rift system, but could also be due to spatial partitioning of strain in a transtensional rift regime.
Open-File Report | 2007
C. Millan; T. J. Wilson; Timothy S. Paulsen
Archive | 2013
C. Millan
Archive | 2010
Timothy S. Paulsen; T. J. Wilson; Richard D. Jarrard; C. Millan; D. Saddler; Andreas Läufer; Simona Pierdominici
Archive | 2010
C. Millan; T. J. Wilson; Timothy S. Paulsen
Archive | 2010
Timothy S. Paulsen; T. J. Wilson; Richard D. Jarrard; Doug Schmitt; Simona Pierdominici; Paola Montone; C. Millan; Andreas Läufer; Thomas Wonik; David Allen Handwerger
Supplement to: Naish, TR et al. (2009): Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature, 458(7236), 322-329, https://doi.org/10.1038/nature07867 | 2009
Tim R. Naish; Ross D. Powell; R. H. Levy; Gary S. Wilson; Reed P. Scherer; Franco Maria Talarico; Lawrence A Krissek; Frank Niessen; Massimo Pompilio; T. J. Wilson; Lionel Carter; Robert M. DeConto; Peter John Huybers; Robert McKay; David Pollard; J. Ross; D. M. Winter; P. J. Barrett; G. H. Browne; Rosemary Cody; Ellen A. Cowan; James S. Crampton; Gavin B. Dunbar; Nelia W. Dunbar; Fabio Florindo; Catalina Gebhardt; Ian J. Graham; M. Hannah; Dhiresh Hansaraj; David M. Harwood
Archive | 2009
Timothy S. Paulsen; Catherine Demosthenous; T. J. Wilson; C. Millan
Archive | 2009
C. Millan; T. J. Wilson; Timothy S. Paulsen